

Ops School Curriculum

Welcome to the Ops School curriculum documentation site.

Ops School is a comprehensive program that will help you learn to be an operations engineer.
Operations engineers are highly skilled people who manage the computer systems of businesses big and small.
In addition to corporate systems, operations engineers also maintain the systems that allow websites, networks, payments systems and other Internet services to function.
The field of operations engineering covers a wide variety of topics, from systems administration, to security, networking and beyond.
Ops School will guide you through all of these skill sets from beginner to expert.

Since the early 90’s, operations engineers have been in high demand.
As a result, these positions often offer high salaries and long term job security.
The SAGE/LISA Salary Survey [https://www.usenix.org/lisa/salary-surveys] has charted the average salaries for systems administrators and operations engineers
since 1999 and has consistently shown the field to be prosperous for those people who enjoy diving into the inner workings of computer systems.

If you already know about the profession and want to know how to start, read How to become an operations engineer.

If you are reading about this career for the first time and want to know if it is for you, check out the Careers in Operations chapter.

Table of Contents

	Introduction
	Goals and Focus

	Syllabus layout

	Contributions
	How we’ll organize work

	How to contribute

	Rewards for contributions

	Ops School Videos

	How to write sections

	Overwriting existing content

	Credits

	Guidelines

	Careers in Operations
	Deciding a career path

	Generalized career paths

	Specialized career paths

	How to become an operations engineer

	Sysadmin 101
	What is Systems Administration?

	What is Development?

	Contrasting Development and Operations

	History of Development and Operations

	What System Administration Isn’t

	Unix fundamentals 101
	File systems

	Shells

	Package management

	The Boot Process

	Useful shell tools

	Crontab

	Unix fundamentals 201
	Kernel tuning

	Signals

	Syscalls

	Booting over the network

	/bin/init and its descendants

	Looking at system metrics

	MS Windows fundamentals 101

	Text Editing 101
	A little history

	vi basics

	Text Editing 201
	Vim

	Emacs

	Tools for productivity
	Terminal emulators

	SSH

	SSH Use Cases

	Multiplexers

	Shell customisations

	Mosh

	Ticketing systems

	Note-taking

	Security 101
	Authentication in unix

	Adding and deleting users and groups

	Standard unix filesystem permissions

	PAM

	Chroot, jails and containers

	Sudo (or, “Why you should not log in as root”)

	History and Lore

	Security 201
	Centralised accounts

	Firewalls and packet filters

	Public Key Cryptography

	Two factor authentication

	Building systems to be auditable

	Network Intrusion Detection

	Host Intrusion Detection

	Defense practices

	Risk and risk management

	Compliance: The bare minimum

	Dealing with security incidents

	ACLs and extended attributes (xattrs)

	SELinux

	AppArmor

	Data placement

	Additional reading

	Troubleshooting
	Methodologies

	Working effectively during a crisis

	Networking 101
	The RFC Documents

	OSI 7-layer model (OSI Reference Model)

	TCP/IP (ARPA) 4-layer model

	IP Addressing

	TCP vs UDP

	Subnetting, netmasks and CIDR

	Classful addressing

	Private address space (RFC 1918)

	Static routing

	NAT

	Networking cable

	Networking 201
	VLANs, 802.1q tagging

	Spanning Tree

	Routing

	ACLs

	Network Bonding (802.3ad / LACP link aggregation)

	IOS switch configuration

	GRE and other tunnels

	Multi-homed hosts

	Similarities and differences between IPv4 and IPv6 networking

	Implications of dual-stack firewalls (especially under Linux)

	Multicast uses and limitations

	Latency vs. Bandwidth

	VPNs

	Network Troubleshooting

	Troubleshooting layer 1 problems

	Differences in perspective: network engineering and systems administration

	Common services
	System daemons 101

	DNS 101

	DNS 201

	DHCP

	HTTP 101 (Core protocol)

	HTTP 201 (Application Servers & Frameworks)

	SMTP 101

	SMTP 201

	Identity Management 101
	LDAP

	NIS

	Active Directory 101
	What is Active Directory?

	What is Active Directory used for?

	You mention “separate components”; what is Active Directory composed of?

	What specific services does Active Directory provide?

	Best Practices for managing an Active Directory installation

	Active Directory 201
	Detailed Breakdown of Active Directory Components/Services

	Advanced Active Directory Maintenance

	Remote Filesystems 101
	NFSv3

	iSCSI

	SAMBA/CIFS

	Remote Filesystems 201
	GlusterFS

	NFSv4

	Netatalk / AFP

	S3

	Programming 101
	Shell scripting basics

	Regular Expressions

	Sed & awk

	GIGO

	Programming 201
	Common elements in scripting, and what they do

	C (A very basic overview)

	Ruby

	Python

	Version Control

	API design fundamentals

	Continuous Integration

	Hardware 101
	Hardware Types

	Basic server architecture

	Disk management

	Performance/Redundancy

	Troubleshooting

	Datacenters 101
	Power budgets

	Cooling budgets

	You will be judged by the tidiness of your rack

	Machine and cable labeling

	Traditional naming conventions

	Datacenters 201
	Networking many racks

	Power

	Cooling

	Physical security and common security standards compliance requirements

	Suggested practices

	Datacenters 301
	Power

	Increasing cooling efficiency

	Design Options

	Virtualization 101
	Intro to virtualization technologies

	The Cloud

	Virtualization 201
	Managing virtualized infrastructures (Private clouds)

	Leveraging virtualization for development

	Leveraging virtualization for production

	Security implications of virtualization

	Logs 101
	Common system logs & formats

	Standard Error

	Log files

	Syslog

	Log Rotation

	Logs 201
	Centralized logging

	Log parsing

	Search & Correlation

	Databases 101 (Relational Databases)
	What is a Database?

	What is a Relational Database?

	Why We Use Databases?

	What is SQL?

	SQL shell

	Creating databases

	Creating users

	Create Tables

	Alter Table

	Drop Table

	Data Type

	Granting privileges

	Removing Privileges

	Basic normalized schema design

	Select, Insert, Update and Delete

	Pro Tips

	Databases 201
	Database Theory

	Document Databases

	Key-value Stores

	Graph Databases

	Application Components 201
	Message Queue Systems

	Message Brokers

	Memory Caches

	Specialized Caches

	Load Balancing
	Why do we use load balancers?

	Application implications

	Non-HTTP use cases

	Software

	Hardware

	Multi-dc

	Monitoring, Notifications, and Metrics 101
	History: How we used to monitor, and how we got better (monitors as tests)

	Perspective (end-to-end) vs Introspective monitoring

	Metrics: what to collect, what to do with them

	Common tools

	Monitoring, Notifications, and Metrics 201
	Dataviz & Graphing

	Graphite, StatsD

	Dashboard: Info for ops and info for the business

	Third-party tools

	Business Continuity Planning
	Backups

	Outages

	Postmortems

	Disaster Recovery

	Architecture 101
	How to make good architecture decisions

	Patterns and anti-patterns

	Introduction to availability

	Introduction to scalability

	Architecture 201
	Service Oriented Architectures

	Fault tolerance, fault protection, masking, dependability fundamentals

	Caching Concerns

	Crash only

	Synchronous vs. Asynchronous

	Business continuity vs. Disaster Recovery

	Designing for Scalability: Horizontal, Vertical

	Simplicity

	Performance

	Tiered architectures

	MTTR > MTBF

	Configuration Management 101
	A Brief History of Configuration Management

	Idempotence

	Convergent and Congruent systems

	Direct and Indirect systems: ansible, capistrano

	Chef

	Configuration Management 201
	Ansible

	Puppet

	CFEngine 3

	SaltStack

	Capacity Planning
	Fundamentals of capacity planning

	Forecasting

	Diagonal scaling

	Statistics For Engineers
	Normal distributions

	Percentiles, histograms, averages, mean, medians

	Software Deployment 101
	Software deployment vs configuration management

	Running services

	Package management

	Software Deployment 201
	Running services

	Soft Skills 101
	Communication basics

	Communication Modes

	Special cases for operations

	Time Management

	Project Management

	The Tao of DevOps

	The importance of Documentation

	Working with other teams

	Soft Skills 201
	Business Acumen in Operations

	Understanding the role of operations

	Thinking broadly

	Promoting Change

	Building basic business skills

	Specific Examples

	Labs exercises
	Bare-Metal Provisioning 101

	Bare-Metal Provisioning 201

	Cloud Provisioning 101

	Cloud Provisioning 201

	Database 101

	Database 201

	Database 301

	Automation 101

	Automation - Chef 201

	Automation - Chef 301

	Automation - Chef 302

	Automation - Puppet 201

	Automation - Puppet 301

	Package Management 101

	Package Management 201

	Build automation fleets

	Version Control with Git 101

	DNS 101

	HTTP 101

	Learning and the Community
	Learning and strategies for improvement

	Things to keep in mind as you learn how to be an engineer

	Golden rules for careers in ops

	Where to look for help in the community

	See also

	Reading List

	Contributions
	How we’ll organize work

	How to contribute

	Rewards for contributions

	Ops School Videos

	How to write sections

	Overwriting existing content

	Credits

	Conventions
	Style Guide

	Sample Network

	Style Guide
	Editing

	Glossary

TODO List

Todo

restoring? what not to backup, regulations on same, how to store them (PCI)

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/backups.rst, line 74.)

Todo

The idea of such a risk may not be immediately clear to a beginning ops person.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/backups.rst, line 81.)

Todo

How does FOIA affect what information an organization needs to have available? Assume the reader is a civilian and doesn’t know how FOIA affects an organization.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/backups.rst, line 98.)

Todo

media – should someone address the state of backup media? Some places are still doing tape. What about orgs who rely on standalone consumer-grade disks for client backups (e.g. Time Machine)? Risks, cost to maintain.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/backups.rst, line 131.)

Todo

Using backups to restore to a known “good” state after an incident just serves to put the machine in a known vulnerable state (security hole that was exploited is now back in operation)

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/backups.rst, line 159.)

Todo

can be used to restore system state that can be useful in a post mortem after an incident (say the attacker covered their tracks but backups were able to capture a rootkit before it was removed or before logs were tampered with)

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/backups.rst, line 161.)

Todo

Check this section. I think i’ve got it down, but I’m not super
familiar with this part.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/boot_process_101.rst, line 323.)

Todo

a specific example of convergent over time might help

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/config_management.rst, line 31.)

Todo

shared resources, bussiness needs.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/disaster_recovery.rst, line 109.)

Todo

How to create a plan from the material we gathered in the planning phase.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/disaster_recovery.rst, line 114.)

Todo

Pros and cons on separating the disaster recovery manual from the technical recovery manual.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/disaster_recovery.rst, line 115.)

Todo

Strategies when simulating. Defining testing scopes. Measuring.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/disaster_recovery.rst, line 120.)

Todo

Limiting the scope to core business

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/disaster_recovery.rst, line 124.)

Todo

Expanding the scope in the disaster recovery environment vs. going back to production before expanding

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/disaster_recovery.rst, line 125.)

Todo

Communication

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/disaster_recovery.rst, line 129.)

Todo

Explain “What is Ops School?”

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/introduction.rst, line 5.)

Todo

Mainly for @apeiron: Simplify the topography description, possibly with use of a table to describe IP assingments

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/meta/conventions.rst, line 60.)

Todo

Mention spec files and roughly how RPMs are put together.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/package_management_101.rst, line 165.)

Todo

Then introduce FPM and tell them not to bother with spec files yet.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/package_management_101.rst, line 166.)

Todo

Explain more about what rubygems are as well as http://rubygems.org

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/programming_201.rst, line 318.)

Todo

Discuss how authentication works.
Touch on /etc/(passwd|group|shadow), hashing.
What are groups? Lead in to the users/groups permissions model and how
permissions are based on the user/group/other bits.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/security_101.rst, line 7.)

Todo

What is PKI? What uses it? Why is it important?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/security_201.rst, line 106.)

Todo

stat command

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/shell_tools_101.rst, line 247.)

Todo

vmstat command

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/shell_tools_101.rst, line 252.)

Todo

strace command

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/shell_tools_101.rst, line 257.)

Todo

ulimit command

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/shell_tools_101.rst, line 262.)

Todo

Only talk about replacing text for now? It’s the most common / needed piece of sed at this level.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/shell_tools_101.rst, line 619.)

Todo

Tighten up the above sentence. It’s wordy and doesn’t seem to make the point I want it to make.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/shells_101.rst, line 30.)

Todo

It might be interesting to put together an exercise where the student interacts with a fictional customer in some different scenarios. Depending on what the student does, the customer is happy or complains to the operations person or escalates the complaint up the management chain. How does the student respond? Could have multiple scenarios with different customers (a customer who causes his own problem then gets in the way, a customer who cannot wait, a customer who tries to fix the problem and makes it worse, a customer who uses the opportunity to speak to an operations person to dump 10 other requests on that person. This idea came to me from a series of books my kid has where you make a decision on page 10 that leads to to either page 26 or page 40. Your decision could end the story or take you in a new direction. The books are full of these decision points so the story is rarely the same twice, kinda like customer support!

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/soft_skills_101.rst, line 355.)

Todo

does this section need a real writeup or are references to Tom’s work enough?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/soft_skills_101.rst, line 375.)

Todo

Might give an example here. Need to write more explaining how to assemble the pieces.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/soft_skills_201.rst, line 433.)

Todo

write this section.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/soft_skills_201.rst, line 487.)

Todo

“What is Development” Section needs more developer perspective.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ops-school/checkouts/latest/sysadmin_101.rst, line 211.)

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Todo

Explain “What is Ops School?”

Goals and Focus

To have a complete syllabus for training smart persons with high potential who
already have a basic understanding of Linux or other UNIX variant, to become
strong junior systems administrators. This course will focus on the Linux
platform as a basis for competency in any UNIX ecosystem.

Usenix defines the sysadmin role as:

Familiarity with an operating system and its commands/utilities at a user
level; ability to edit files, use basic utilities and commands, find users’
home directories, navigate through the file system, install software on
workstations, and use I/O redirection; some understanding of how user
authentication happens in a directory service context. Ability to
identify/locate shared resources and perform simple tasks (e.g., manipulate
jobs in a print queue, figure out why a network file system isn’t
available).

—Usenix, Job Descriptions for System Administrators, 3d Edition Revised

Our goal is to teach these topics, but also to provide a good understanding of
how the components work, which enables the students to continue to grow their
skills and contributions.

Our focus is any person who has an interest in operations. There are often
personality traits which allow people to understand the role of a systems
administrator more easily, but the material should be easily accessible to
anybody who wishes to learn about it.

The required minimum skill level before participating will be as follows:

	Has installed Linux or other UNIX variant

	Is comfortable with, or even prefers, working on the command line

	Has a basic understanding on navigating the filesystem, and the most basic
tools (ps, ls, top, etc).

Syllabus layout

As we create this syllabus, there will inevitably be items which are found to be
too advanced for a first pass but should be kept and taught as a progression
into an intermediate systems administrator.

	Junior topics are labelled “101”.

	Intermediate topics are labelled “201”.

	Senior topics are labelled “301”.

Contributions

Ops School is a community driven effort, and we always need people to
contribute.
Currently we need people who are able to fill in areas in our documentation -
whether it’s a little or a lot, everything helps.

How we’ll organize work

This is a living document. We write headings and their breakdowns as bullet
points. We turn each bullet point into the material we want people to read.
That’s right. The syllabus IS the course. For now, at least, until we find
a better way.

You should start writing the actual material to be taught right into this
syllabus. We’ll worry about formatting and things later.
As you write, remember that “101” material is aimed at people who are working up
to being junior sysadmins. They’re mostly blank slates.

How to contribute

You can find the documentation source on GitHub and send pull requests:

https://github.com/opsschool/curriculum

Please fork the repo to your own account, create a branch, make your changes
there, and issue a pull request from your fork/branch to opsschool:master.
Be descriptive in your commit message for anything non-obvious.

If all of this git and GitHub stuff is a little overwhelming, take a
look at GitHub’s documentation [https://help.github.com]. If you have still have questions
after reading that, please feel free to join #opsschool on
irc.freenode.net and ask your questions there. We’ll be glad to help you
get your patches merged–but please remember that many of us are busy ops
professionals, so we may not respond immediately.

If you’d like to join the mailing list, email avleen@gmail.com.

Rewards for contributions

We have a special reward for reaching either of the following goals with your
contributions:

	10 pull requests totaling 50 or more lines changed

	1 recorded Ops School video

For completing either of these, you will receive a dozen freshly baked cookies,
made fresh for you by a professional baker, and a 3-inch die-cut sticker of the
Ops School logo.

Once you reach either of these, please fill in the OpsSchool rewards form [https://docs.google.com/forms/d/1XCNPKgqtK2FyB2zTUBW_aYVHUnhao9-CPhL2pB6ZGyU/viewform] and
we will get your reward over to you!

Ops School Videos

In collaboration with O’Reilly Media, we are filming the Ops School curriculum
to provide another method of learning for students. Filming happens
approximately every 3 months in New York or Silicon Valley.

O’Reilly is publishing the videos online, in individual form and in package
form. Any profits which would be made by Ops School are donated to non-profit
organisations which aid in learning for low-income persons.

Video can be short (10-20 mins), or longer. Depending on the content in the
video, some presenters choose to use slides, while others prefer screen-casting
live demonstrations. Some videos may not need any supporting material at all!

The next scheduled filming is at the Santa Clara Hyatt, from Monday June 17th
2013 to Friday June 21st 2013. Filming slots are available all day.

The topics which have already been filmed are:

	Boot Process 101

	DNS 101

	Filesystems 101

	MySQL 101

	Nagios 101

	Networking 101

	Outage Investigation 101

	Package Management 101

	Shells 101

	SSH 101

	Application Level Monitoring

	Careers In Operations

	Operable Service - What People Expect From an Operable Service

	Productivity Tools and Techniques

	The /proc Filesystem

	Web Flow - The Life of a Web Request

If you are interested in filming, please contact Avleen Vig (avleen#gmail.com)
or open an issue on the Github project.

How to write sections

In order to help students learn as much as possible, we are taking the following
approach to the curriculum (this isn’t a hard-and-fast rule, but an encouraged
guideline wherever possible):

	Approach your writing in three steps:

	Tell students what they’re going to learn

	Teach them what they need to know

	Tell them what they have learnt

	As much as possible, treat this as an interactive exercise. For example if you
are writing about virtual machines, don’t just write about virtual machines.
Have the student create a virtual machine, and then explain what just
happened.
Don’t tell students that package managers install packages, have them install
a few packages and then explain how the package manager did its thing.

Please read the Conventions topic for some style guideline and preferences.

Overwriting existing content

There are times when you will want to update or replace sections of text written
by others. When doing so, follow these guidelines to ensure your changes are
integrated smoothly:

	Submit your pull request

	Reference the original author in your commit

We’ll wait a few days (up to one week) to let the original author comment, if we
feel there may be anything contentious in the commit. For most simple and
straightforward commits, we’ll simply accept the commit.

Credits

If you contribute to this document and would like your name in lights (or, at
least, written down somewhere) please add it here along with an email address
and any affiliation:

	Name

	Company

	Avleen Vig <avleen@etsy.com>

	Etsy, Inc

	Patrick McDonnell

	

	Michael Rembetsy <mcr@etsy.com>

	Etsy, Inc

	Magnus Hedemark <magnus@yonderway.com>

	Wireless Generation

	Ariel Jolo <ajolo@sysarmy.com.ar>

	sysARmy

	Ryan Frantz <ryanleefrantz@gmail.com>

	Crabby Admins (www.crabbyadmins.org)

	Mike Fiedler <miketheman@gmail.com>

	Datadog

	Nathan Milford <nathan@milford.io>

	Outbrain, Inc.

	Patrick Cable <pc@pcable.net>

	

	Benjamin Krueger <benjamin@seattlefenix.net>

	Sourcefire, Inc

	Mårten Gustafson <marten.gustafson@gmail.com>

	

	Phil Hollenback <philiph@pobox.com>

	

	Adam Jacob <adam@opscode.com>

	Opscode, Inc.

	Mark Imbriaco <mark@github.com>

	GitHub

	James Turnbull <james@lovedthanlost.net>

	Puppet Labs

	Scott Nyce <snyce@codetwit.com>

	TiVo, Inc.

	Christian Paredes <cp@redbluemagenta.com>

	Amazon

	Jan Schaumann <jschauma@netmeister.org>

	

	Stephen Balukoff <sbalukoff@bluebox.net>

	Blue Box Group

	Evan Pettrey <jepettrey@gmail.com>

	LOPSA

	Khalid Maqsudi <khalid7621@hotmail.com>

	Ashford.com

	Paul Graydon <paul@paulgraydon.co.uk>

	

	Harold “Waldo” Grunenwald

	

	Martin Gehrke <martin@teamgehrke.com>

	LOPSA

	John Boris <jborissr@gmail.com>

	LOPSA

	John Dewey <john@dewey.ws>

	AT&T

	Carolyn Rowland <unpixie@gmail.com>

	

	Jordan Dea-Mattson <jdm@dea-mattson.com>

	Numenta, Inc.

	Sean Escriva <sean.escriva@gmail.com>

	Heavy Water Ops

	Adam Compton <comptona@gmail.com>

	

	Franck Cuny <franck@lumberjaph.net>

	SAY Media

	Chris Nehren <cnehren@omniti.com>

	OmniTI

	Brian Rak <dn@devicenull.org>

	

	Divij Rajkumar <drajkuma1@gmail.com>

	

	Aslan Brooke <aslandbrooke@yahoo.com>

	ZynxHealth.com, InfoQ.com

	Glen Kaukola <gkaukola@cs.ucr.edu>

	

	Spencer Krum <krum.spencer@gmail.com>

	UTi Worldwide Inc.

	Jeremy Grosser <jeremy@synack.me>

	Uber Technologies, Inc.

	Hugo Landau <hlandau@devever.net>

	

	Konark Modi <modi.konark@gmail.com>

	MakeMyTrip.com

	Josh Reichardt <josh.reichardt@gmail.com>

	thepracticalsysadmin.com

	Ben Reichert <ben@benreichert.com>

	

	Simon Aronsson <simon.aronsson@gmail.com>

	itshale.com, simonaronsson.se

	Andrew Langhorn <andrew@ajlanghorn.com>

	

	Abubakr-Sadik Nii Nai Davis <dwa2pac@gmail.com>

	

	Mike Julian

	

	Bram Verschueren

	

Guidelines

Other places may use the phrase “Code of Conduct”, or something similar - this
is essentially that.

Like the technical community as a whole, the Ops School team and community is
comprised of a mixture of professionals and volunteers from all over the world,
who collaborate on bettering Ops School, including mentorship, teaching and
connecting people.

Diversity is one of our biggest strengths, but it can also bring increased
communication challenges at times.

To that end, as you are working with others on Ops School, please keep in mind
the following guidelines, which apply equally to founders, mentors, those who
submit new content or ideas, and to anyone who is seeking help and guidance.

The following list isn’t exhaustive; it is intended to help all of us
communicate well so that the Ops School community can work better together:

	Be welcoming, friendly, and patient.

	Be considerate.

	Be respectful.

	Be professional.

	Be careful in the words that you choose.

	When we disagree, let’s all work together to understand why.

This list applies to all forms of communication: IRC, mailing lists, and any
other forum that is used involving of Ops School. Please keep in mind that:

	Your work will be used by other people, and you in turn will depend on the work of others.

	Decisions that you make will often affect others in the community.

	Disagreements happen, but should not be an excuse for poor behavior and bad manners.
When disagreements do happen, let’s work together to solve them effectively
and in a way that ensures that everyone understands what the disagreement was.

	People may not understand jokes, sarcasm, and oblique references in the same
way that you do. Remember that and be kind to the other members of the community.

	Sexist, racist, or exclusionary comments are not welcome in Ops School.

	The strength of the community comes from all of the people in it, their
wide range of backgrounds, and the contributions everyone makes. Let’s keep
working together, learning from our mistakes, and making the community as
awesome as it can be.

(Inspired by the Chef Community [http://docs.opscode.com/community_guidelines.html], Speak Up! project [http://speakup.io/coc.html], and predecessors)

Careers in Operations

Taking a step into the world of Operations can be daunting. At present there are
few professional degrees, and the ones that exist focus on specialized topics
such as systems administration, network engineering or security.

However, the Operations landscape is significantly larger than that. This page
aims to provide a detailed view on the careers you can move to as you enter the
field.

Deciding a career path

Around the end of the 101 level of Ops School, you will want to start thinking
about which career path you want to take. The paths tend to overlap in places,
and both paths can lead to similar places down the road.

Imagine two roads that run straight, and occasionally get close or overlap, but
generally head in the same direction.

Your two options are usually:

	Operations generalist

	Operations specialist

The one you choose, should be the one you feel most comfortable with. Over time,
as your skills grow, both paths should lead to similar opportunities: team
leadership, senior technical leadership, and management.

The way you travel each path is considerably different, and it isn’t uncommon to
switch from one path to another once or twice.

Generalized career paths

	Operations Engineer

	Operations Manager

Persons in generalized careers are often in high demand by employers.
While the adage states “Jack of all trades, master of none”, an operations
generalist is very much expected to be “Master of almost all trades.”

It’s quite common to see a good Operations Engineer who is well-versed in
systems administration, database administration, storage engineering, network
engineering, security engineering, and other topics.

Similarly, Operations managers are expected to know a wide variety of subjects
at a reasonable enough level to make good technical decisions. Often, people who
choose to become Operations managers begin their careers as either generalists,
or specialists in one or more fields.

Generalist roles are often most highly prized in technical companies and
startups, where it is beneficial to be able to work with multiple technologies
and groups well.

Operations Engineer

Operations engineers are expected to be able to wear any of the following hats
(and sometimes all of them, at the same time):

	Database administrator

	Systems administrator

	Network engineer

	Security engineer

	Architect

	Performance engineer

	Part-time software engineer

	Storage engineer

	High Performance Computing engineer

The role can be summed up appropriately as this: When somebody wants to know
about any production system, no matter what it is, they will ask the Operations
engineer. Your job as the Operations engineer, is to know the system well enough
to be able to answer any question, or know how to find the answer quickly.

In the medical field, you would be a Doctor of Internal Medicine.
In culinary, you would be an Iron Chef.

Operations Manager

Operations managers are similar in many ways to operations engineers. If you
have read the 21 Irrefutable Laws of Leadership [http://amzn.com/0785274316],
then this is a leadership role, not a management role.
An Operations manager works to bring their team and other teams closer together.
A good reference on managing an operations team, is Michael Rembetsty’s PICC
2012 talk [http://www.slideshare.net/mrembetsy/devops-picc12-management-talk]
on DevOps Management. It covers moving from traditional Operations to DevOps,
and then developing and growing an Operations team.

Specialized career paths

	Systems Administrator

	Database Administrator

	Network Engineer

	Security Engineer

	Storage Engineer

	High Performance Computing Engineer

Unlike generalists, specialists are often hired to take care of certain
components of larger systems. While generalists tend to focus on increasing both
the breadth and depth of their knowledge over time, specialists work to become
deep subject matter experts. Common areas of focus are databases, networking,
security, storage, capacity planning, project management, training, and more.
In almost all cases these require at least the 101 level of understanding, and
fully understanding through the 201 level is better.

Systems Administrator

The Systems Administrator is the classic and probably most recognized
Operations role. Key responsibilities usually include managing desktops,
servers, operating systems, databases, middleware and applications.

Systems Administrators can range from “jack of all trades” with knowledge of
multiple systems and platforms to specialists who focus on one system or
platform, for example Microsoft Windows or Linux.

Whilst perhaps more “general” than some of the other specialist roles, Systems
Administrators tend to focus on managing individual hosts, usually desktops or
servers, rather than looking more broadly at infrastructure like Operations
generalists.

Database Administrator

Database Administrators, or DBAs, are specialists in managing the performance,
security and stability of database systems. Once a common role, they are less
frequently seen today and much of the work involved in this role has been
replaced by more advanced database systems, automation and the growth of these
skills in related roles.

DBAs usually have specialized skills in managing the performance of database
systems, are often experts in understanding database features like stored
procedures and are called upon to improve the performance of database systems
using techniques like query analysis.

Network Engineer

Network Engineers are Operations people who focus on network devices and
network management. Network Engineers manage the provisioning, configuration,
security and availability of networking infrastructure.

Network Engineers are able to architect and design networks both internal to
organizations and between organizations and their customers, for example
Internet-facing infrastructure. As a result their skills often overlap with
Security Engineers in technologies such as firewalls, proxies and gateway
services like Virtual Private Networks (VPN).

They are expected to have a deep understanding of the OSI model and its
components especially physical networking technologies like Ethernet and
transport and session components like TCP/IP, UDP, and SSL. They are often
called to identify and fix problems with applications and their connectivity
and hence have strong skills in diagnosis, log and data analysis, and
troubleshooting.

Security Engineer

Whilst seen by many as a separate discipline, Security Engineers are Operations
people with a focus on security and security technology. Security Engineering
roles can include:

	Traditional Systems Administrators who maintain security equipment like
firewalls and proxies

	Specialists who design and manage complex cryptographic systems

	Penetration testers who attempt to identify security vulnerabilities in
infrastructure and applications

	Engineers with a focus on Identity Management who manage complex
authorization, access control and authentication systems

	Analysts and incident response personnel who respond to security events and
incidents

Security Engineers usually have many of the same skills as their more
mainstream Operations colleagues but often include deeper skills in fields such
as Compliance Management (ensuring companies maintain compliance to industry
and government regulations), Risk Management (identifying, documenting and
managing Risk), education (teaching people about how to stay secure),
Cryptography, and related areas.

Storage Engineer

Seen largely in enterprise-scale organizations, Storage Engineers focus on
managing storage technologies such as disk arrays, Network Attached Storage
(NAS) devices, Storage Area Networks (SANs), Tape and Media management systems
and related backup technologies.

Storage Engineers provision, configure and manage this infrastructure which
then provides storage for web and file servers, database systems, applications
and backups.

They usually have strong skill overlaps with Network Engineers (with so much
modern storage being network-attached in some manner) and usually have strong
skills in capacity planning and performance management of infrastructure.

High Performance Computing Engineer

High Performance Computing (HPC) involves large scale computing infrastructure,
which is at the cutting edge of presently available technology, oftentimes making it at TOP500.ORG

Typically, HPC platforms are used for scientific computing, big data, complex models
and may have applications in fields as diverse as physics, finance, medicine, defence, economics etc.
for instance: Meteorology and Climate prediction may appear first as a tiny slice of the bigger picture
yet they tend to be applicable to several aspects of human life and scientific efforts to improve it.

HPC engineers are expected to master an array of high-end technologies in fields such as
networking (InfiniBand, multi-Gigabit Ethernet), computing (several computer architectures),
parallel storage/filesystems/filers (Lustre, GPFS, Isilon, NetApp, PanaSAS), as well as
be able to give advice on a number of software components (gnu/intel/pgi compilers,
debuggers, mpi stacks, FFTW, linear algebra and other optimized math libraries etc etc).

Most importantly, HPC engineers should be able to interface with other operations engineers,
each a specialist in their own field, in order to let all systems run both at top performance
and within the maximum range of their reliability envelope, since HPC downtimes come at a high cost.

How to become an operations engineer

Employers look for a number of things when hiring junior engineers and admins:

	An understanding of the basics of Unix-style and/or Microsoft Windows
operating systems, including installing the operating system, installing and
configuring packages and editing files. You can find these in the
Unix fundamentals 101 MS Windows fundamentals 101 sections.

	Knowledge of common internet protocols and systems, and how to implement and
manage them, including DNS 101, SMTP 101 and
Networking 101.

	A solid grasp of how to troubleshoot problems.

	Repeated success in completing the Labs exercises.

These are only the beginning, and the bare minimum you should expect to know as
a junior level engineer. While demand for operations engineers continues to grow
at a fast pace, you will still find there is competition for positions. The more
you know, the stronger your chances of finding a job.

Simply reading the 101 sections of Ops School is not sufficient, you must
understand it. As an example: The DNS section explains there
are 13 root name servers. In addition to knowing this fact, you have to
understand why there are 13 root name servers and be able to explain it
confidently to others.

Sysadmin 101

System Administration is the blanket title for a myriad of job
responsibilities involving the management of information systems and/or
services. We choose to refer to it as a “blanket title” because the
responsibilities are broad and can differ from organization to organization.
In some organizations, it even differs from group to group!

System Administration is often referred to as “operations” or “ops” too - you
might have guessed that though, having decided to enroll in Ops School.

Like almost everything in this world, system administration does not exist in
a vacuum. There are two other groups of people that exist to make
an information system or service come together: developers and customers.
Customers are often referred to as end-users or people or humans - basically,
they’re the folks you’re implementing a system or service for.

A system administrator experiences life in all three of these roles: sometimes
you will be tasked with maintaining a system or service, and sometimes you
may be developing parts of a system. Many times, you’ll be someone else’s
customer.

This section will get into what system administration (ops) professionals do,
what developers do, where they compare and contrast, what role that ops plays
in the larger business context, a mindset and approach to systems administration,
demonstrate the importance of problem solving and ethics in the every day
life of a system administrator.

What is Systems Administration?

Like we mentioned above, the role of the System Administrator is diverse.

To illustrate some of the latitude present in the role, consider how the
following descriptions compare and contrast:

	Matt works for an elementary school. He’s referred to by other employees at
the school as the system administrator. To the other employees, Matt ensures
that the computers “just work.” Realistically, Matt spends time making sure
that the systems that everyone uses are patched - to avoid security issues.
Other employees talk to him
about software they may need installed – on their computer, or maybe all of
them! Matt also has the responsibility of making sure that the school’s
website is available for parents to get information on, and that the classroom
management software is up and running and accepting requests. Matt also needs
to be able to look into the future and figure out how much space the employees
may need on the server, and be able to justify that to his boss. When report
card time runs around, Matt has to make sure that the teachers are able to
give their report cards out on time.

	Sarah works for a large website that many people use on a day to day basis.
Downtime is a big deal for this website: after all, when the site is down,
people aren’t spending money. When these problems occur, Sarah gets paged to
determine the root cause of the issue and respond. Fortunately for Sarah she’s
not always being paged. During the normal day-to-day operations of the site,
Sarah writes various scripts and programs that help her other administrators
manage the site on a day to day basis, and strives to reduce the amount of
“manual” tasks that the team she’s on has to deal with.

	Will works for a small town. The town has 35 employees who use computers
every day, and they need access to email and other collaboration tools. With
so many services and options for e-mail, which one makes the most amount of
sense for the town? Will collects input from the employees about what
capabilities are important, input from legal council about what laws a town
must follow regarding electronic communication, and evaluates a few
services or products with his users’ needs in mind along with the town’s. If he
ends up using a third-party service, he’ll have to figure out how to roll it
out to the users. If Will chooses to host himself, he’ll have to coordinate
getting the appropriate infrastructure set up to make sure that it can meet
the capacity of the users. He’ll also need to set it all up.

	Karen works for a large business. The business has many groups, but she
works with one set of users - hardware engineers. She maintains a network that
they use to run their hardware simulations before the hardware goes out to be
built. She regularly writes scripts to reduce the number of manual steps
something takes - like adding new users to the system. She also has to
coordinate how the network will be patched regularly, what investments will be
required for the network to continue operating at peak performance, and work
with the other administrators to create something that works for the engineers
at the business.

	Darren works for a large financial company. The company has many teams that
do different things, but there’s collaboration between the different system
administrators - the operations team (staffed with administrators) implements
things that the research team (also administrators) recommends based on the
needs of the business. They work with developers too - since the financial
company has a lot of custom software that is written by the developers. The
developers have different goals when they write their software - so they meet
with Darren and his team to make sure they understand the context surrounding
where and how their application will run, and to make sure that Darren’s team
knows what they need as well. Darren’s team may have ideas about what
statistics are important to monitor.

	Chris works for a consultancy. The company has many clients for which it
provides software development and operations support. Every client has their
own infrastructure, their own requirements - some of them very similar
to the previous examples, some very different. Therefore, Chris needs to be
familiar with a wide range of technologies, in addition to being able to
learn new things quickly. There’s a lot of variety in the day-to-day job.
While it’s not his primary responsibility to write code, sometimes the job
calls for it - where context has already determined the implementation
language. Chris works closely not only with the clients but also with his
developer coworkers and the rest of the operations team to meet client goals.
In addition, Chris also works with the rest of the operations team to support
the consultancy’s own infrastructure.

Comparing Stories

Did you notice any themes throughout the stories? How do they contrast?

Highlighted themes include:

	System Administrators rarely work on their own. Some of the stories
feature System Administrators who are the only “Information Technology” staff
in their organization - but it’s a requirement for them to work with everyone:
the folks who “sign the paycheck at the end of the day,” and the people
who use their technology.

	System Administration can be difficult if you don’t automate! Imagine if
Matt had to install a software package on 200 machines by walking to each
machine and installing it? How could he get any of his other requests done?

	At times, the system administrator may need to write code.
Maybe that means a script that can take a list of users and add them to a
system, maybe that means a script that can check to make sure a service is
responding appropriately for a monitoring system.

	System Administration has a wide variety of meanings to different people.
The other non-IT employees are looking for something that “just works” - the
ops person is concerned with proper implementation of a service so it
continues to be scalable and reliable for the future.

What is Development?

As mentioned in the section introduction, system administration doesn’t exist
in a vacuum. Computers don’t just compute for the sake of it; not yet,
anyway.

Developers write applications in a variety of programming languages to
make a computer do something. Developers created the backend that allows you
to order a book on a site like Amazon.com, post a status on Facebook, or
research a topic in a literary journal database.

These backends can be big, and have many considerations behind their design.

	Rachel works for an ecommerce company. The company has a large
team of developers, all working in different applications, usually in Ruby or
JavaScript, and the applications talk to each other via APIs to support the main
site that customers interact with. Her obligations to the business are to create
new features for the website and maintain or fix the old ones. Her obligations to
her other developers are to keep the code clean and readable, with tests so others
can confidently refactor her code. She works closely with the Operations team to
make the app-level changes that help the ops team maintain a robust infrastructure,
like making pages fully cachable or eliminating unnecessary HTML, CSS, JavaScript
or images being sent to the browser.

	Tyler is a systems developer at a small technology company. He takes
complex processes, like developing a search engine or collecting statistics, and
creates several pieces of software to accomplish those tasks. He works primarily
in C, Perl and Python and has to have a deep understanding of the operating system
his code will run on. He works closely with his Operations engineers to make sure his
code is performant and on capacity planning.

	Francesca is one of five students working on the website for her school’s
internationally famous hackathon. She and her friends run a Tornado web server
with a Postgres database. For the front end, they use GitHub pages and React.
Their website is hosted on Amazon Web Services. The team uses New Relic and
Pingdom to profile the code to see what time, CPU, and memory it consumes, as
well as to alert them if any aspect of the site is acting abnormally.

	Jean works at a large technology firm. The company has many teams of
developers, all working on different aspects of their product. Jean is a data
engineer who manages the collection and display of certain statistics that are
useful for other employees of the company. If Jean has any issues with their
computer or development environment, they ask the people running the
information technology desk. Core parts of the technology at this company are
maintained by site reliability engineers. Jean also has an embedded site
reliability engineer on their team who makes sure that the features they
create are scalable and maintainable.

Todo

“What is Development” Section needs more developer perspective.

Contrasting Development and Operations

At the end of the day, both groups have an important shared goal: to ensure that
a system or service remains as available (think: accessible, usable, works how
people expect it to) as a customer expects it to be. You’ll see references to
the idea of how “available” a system or service is later when Service Level
Agreements (SLAs) are discussed.

That being said, Development and Operations have different day-to-day thoughts.

Operations thoughts include:

	How are we going to install (or deploy) the servers that run this application?

	How will we monitor the system/service to make sure it’s working as we expect?

	Can we deploy this system or service in a way that is easy to maintain?

	What are the pros/cons of implementing this application in this way?

Development thoughts include:

	How will I implement message passing between two parts of this application?

	What’s the best algorithm to use for searching through this amount of data?

	Should I be thinking of a key-value store for this data vs. using a relational
database?

	What language will I implement this in?

Again, this is by no means an exhaustive list - entire books could be written
about the subject. It’s just to give a feel for the different considerations.

History of Development and Operations

Historically, Developers made a product or application and Operations
implemented it. Some companies still use this model today. Unfortunately, the
effects of this style of work can be dangerous:

	Developers and Operations personnel may have different goals. Something
important to the operations folk may not be important to the Development
folk.

	Siloing these two organizations means that the most important goal of
service availability is compromised. The person who is using your program
or service doesn’t care who made a mistake, the service is down.

	Speaking of mistakes: when companies don’t encourage their development and
operations teams to work together, it’s possible that groups get too invested
in assigning blame, instead of working together to fix an issue

Fortunately, in recent years, many organizations have made more effort to ensure
that both teams are familiar with the concepts of the other; this is often
referred to as DevOps, the combination of Development and Operations. Recall
Darren’s story - he’s an operations person who
worked with the developers to ensure that the developers understand the
environment that their application will run on. The street went both ways,
though: the developers need to share how they plan to implement various product
features so that the operations team can figure out how to best support the
developers’ needs.

If you’re working in an environment without developers, that’s OK. There are
other people who you share a common, larger goal with. Businesses may have
analysts that interpret needs and look to you for assistance. In
Karen’s story, she supports hardware engineers who
have requirements to deliver a particular sensor. Their ability to work hinges
on Karen’s ability to deliver a service for simulation that is available for
them to work, which requires an understanding of their requirements and needs
as well.

What System Administration Isn’t

System Administration, like many things in life, can suffer from a cultural
perception issue. Primarily, some outside of the operations field that believe
that the role of IT is not to innovate; rather that IT exists to enforce rules
decided on by others.

We challenge that mindset. System administration is not about saying “no” to
requests but about finding ways to intelligently fulfill the needs of a business
in a way that increases maintainability, usability, and security for a group of
people and enhances their ability to do useful work.

Another perception issue is that of the BOFH [http://www.theregister.co.uk/data_centre/bofh/]. While there’s something of
a grain of truth to the meme, most system administrators who adopt such an
attitude quickly find themselves out of work. Beyond the social implications,
this sort of obstructionist, adversarial behavior is the least effective way of
addressing problems. The best path to success and satisfaction is collaboration,
not obstinacy. This requires cooperation from all involved, whether their role
is technical or not. An administrator’s job is to create order from chaos, to
control the technology – not the people. As with all social interactions,
everyone has their own needs and goals, and it can be complex to navigate safely,
but it is critical to the success of the organization.

Problem Solving

Learning Styles - Ways to improve skill set

Methodologies for finding solutions

Ethics

	LOPSA ethics statement/SAGE(now LISA) ethics statement?

Where to draw the line

Keeping yourself safe from yourself

Unix fundamentals 101

	File systems
	Background

	Navigating the filesystem

	Working with disks in Linux

	Configuring your drive with partitions

	Formatting partitions with new file systems

	Mounting a filesystem

	Filesystem options

	How filesystems work

	Inodes

	File system layout

	Fragmentation in unix filesystems

	Filesystem objects

	Shells
	What is a shell?

	Introduction to Bash

	Shell Fundamentals

	Package management
	Workflow

	What is a package manager?

	RPM and yum (RedHat, CentOS, Fedora, Scientific Linux)

	dpkg and APT (Debian, Ubuntu)

	The Boot Process
	Power Supply Unit

	BIOS and CMOS

	POST tests

	Reading the Partition Table

	The Bootloader

	The Kernel and the Ramdisk

	OS Kernel and Init

	Runlevels

	Getty

	Useful shell tools
	The Unix Philosophy

	Working with your system

	Extracting and manipulating data

	Crontab
	What is a “crontab”?

	The crontab command

	What are some common “cron expressions”?

	Advanced “crontab”

	Footnotes

File systems

Background

A filesystem is the street grid of your hard drive. It’s a map of addresses to
where data is located on your drive. Your operating system uses the filesystem
to store data on the drive.

There are a number of different types of filesystems. Some are better at
handling many small files (ReiserFS), some are much better at large files and
deleting files quickly (XFS, EXT4).

The version of Unix you use will have picked a filesystem which is used by
default, on Linux this is often EXT4.

Understanding the way filesystems work is important when you have to fix issues
related to disk space, performance issues with reading and writing to disk, and
a host of other issues.

In this section we will discuss creating partitions, file systems on those
partitions, and then mounting those file systems so your operating system can
use them.

Navigating the filesystem

When you log into a Unix system, you will be given a command line by the
shell which may look something like this:

user@opsschool ~$

By default you will be in the “current working directory” of the process that
spawned the shell. Normally this is the home directory of your user.
It can be different in some edge cases, such as if you manually change the
current working directory, but these cases are rare until you start doing more
advanced things.

You can find the name of the current directory with the pwd command:

user@opsschool ~$ pwd
/home/opsschool

You can see the list of files and directories in this directory with the ls
command:

user@opsschool ~$ ls
file1.txt file2.txt tmpdir

The ls command also accepts the -l argument to provide a long-listing,
which will show you permissions, dates, ownership and other information:

user@opsschool ~$ ls -l
-rw-r--r-- 1 opsschool opsgroup 2444 Mar 29 2012 file1.txt
-rw-r--r-- 1 opsschool opsgroup 32423 Jun 03 2011 file2.txt
drwxr-xr-x 15 opsschool opsgroup 4096 Apr 22 2012 tmpdir

You can see the contents of other directories, by giving the name of the
directory:

user@opsschool ~$ ls -l /
dr-xr-xr-x 2 root root 4096 Apr 26 2012 bin
dr-xr-xr-x 6 root root 1024 Sep 18 14:09 boot
drwxr-xr-x 19 root root 8660 Jan 8 16:57 dev
drwxr-xr-x 112 root root 12288 Feb 8 06:56 etc
drwxr-xr-x 67 root root 4096 Feb 7 19:43 home
dr-xr-xr-x 13 root root 4096 Mar 6 2012 lib
drwx------ 2 root root 16384 Sep 18 2011 lost+found
drwxr-xr-x 5 root root 4096 Nov 19 18:53 mnt
drwxr-xr-x 4 root root 4096 Sep 4 15:15 opt
dr-xr-xr-x 1011 root root 0 Sep 23 2011 proc
dr-xr-x--- 10 root root 4096 Jan 23 23:14 root
dr-xr-xr-x 2 root root 12288 Oct 16 22:23 sbin
drwxr-xr-x 13 root root 0 Sep 23 2011 sys
drwxrwxrwt 65 root root 16384 Feb 11 04:37 tmp
drwxr-xr-x 16 root root 4096 Feb 8 2012 usr
drwxr-xr-x 27 root root 4096 Nov 4 03:47 var

You may have noticed that the names of directories follow a pattern. / is
also called the root directory. All directories and files are contained under
it. From the first example, the / directory contains the /home
directory, which in turn contains the /home/opsschool directory.

To change directories, use the cd command:

user@opsschool ~$ cd /tmp
user@opsschool ~$ pwd
/tmp

There may be times you need to find a file on your filesystem, based on its
name, date, size, or other particulars. For this you can use the find
command:

user@opsschool ~$ find /home/opsschool -type f -name file3.txt
/home/opsschool/tmpdir/file3.txt

Working with disks in Linux

Disks in Linux are normally named /dev/sda, /dev/sdb, etc.
If you are in a VM, they may be named /dev/xvda, /dev/xvdb, etc.
The last letter (“a”, “b”, “c”..) relates to the physical hard drive in your
computer. “a” is the first drive, “b” is the second.

If you have an already configured system, you will likely see entries like
this:

-bash-4.1$ ls -la /dev/sd*
brw-rw---- 1 root disk 8, 0 Jul 6 16:51 /dev/sda
brw-rw---- 1 root disk 8, 1 Sep 18 2011 /dev/sda1
brw-rw---- 1 root disk 8, 2 Sep 18 2011 /dev/sda2
brw-rw---- 1 root disk 8, 3 Sep 18 2011 /dev/sda3

The number at the end of each drive maps to the partition on the drive.
A partition refers to a fixed amount of space on the physical drive. Drives must
have at least one partition. Depending on your specific needs, you might want
more than one partition, but to start with, we’ll assume you just need one big
partition.

Configuring your drive with partitions

The parted tool is for modifying and creating disk partitions and disk
labels. Disk labels describe the partitioning scheme. Legacy Linux
systems will have the msdos partitioning table, although newer systems with EFI
use the gpt partitioning table. Drives with msdos disk labels will have a
Master Boot Record, or MBR, at the beginning of the drive. This is where the
bootloader is installed. GPT-labeled drives will usually have a FAT-formatted
partition at the beginning of the disk for EFI programs and the bootloader.

parted has a subshell interface. It takes as an argument a device name.

root@opsschool ~# parted /dev/sda
GNU Parted 2.3
Using /dev/sda
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) print
Model: ATA VBOX HARDDISK (scsi)
Disk /dev/sda: 42.9GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos

Number Start End Size Type File system Flags
 1 8225kB 42.9GB 42.9GB primary ext4 boot

 (parted)

In this example parted ran against /dev/sda. The user then used the
print command to print out information about the disk and the current
partitioning scheme. The user found a 43 GB disk using the msdos partition
table format. The disk had one partition which was flagged as bootable.
Looking at a second example:

root@opsschool ~# parted /dev/sdb
GNU Parted 2.3
Using /dev/sdb
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) print
Error: /dev/sdb: unrecognised disk label
(parted) mklabel msdos
(parted) print
Model: ATA VBOX HARDDISK (scsi)
Disk /dev/sdb: 8590MB
Sector size (logical/physical): 512B/512B
Partition Table: msdos

Number Start End Size Type File system Flags

(parted) mkpart primary 1 1G
(parted) set 1 boot on
(parted) mkpart primary 1G 5G
(parted) mkpart primary 5G 7G
(parted) mkpart primary 7G 8G
(parted) p
Model: ATA VBOX HARDDISK (scsi)
Disk /dev/sdb: 8590MB
Sector size (logical/physical): 512B/512B
Partition Table: msdos

Number Start End Size Type File system Flags
 1 1049kB 1000MB 999MB primary boot
 2 1000MB 5000MB 3999MB primary
 3 5000MB 7000MB 2001MB primary
 4 7000MB 8590MB 1590MB primary

(parted)

parted failed to read the label, so the user created a new msdos
disk label on the disk. After that parted was able to see that the disk was
8GB. We created a primary 1GB partition at the beginning of the disk for
/boot and set the bootable flag on that partition. We created 4GB, 2GB,
and 1GB partitions for root, var, and swap, respectively.

Formatting partitions with new file systems

New filesystems are created with the mkfs family of commands. There are a
variety of file systems to choose from, man fs has a list of filesystems
with short descriptions of each. Choosing a filesystem involves characterizing
the workload of the filesystem and weighing engineering tradeoffs. On Linux
systems, ext4 is a good general purpose choice. Following from the example
above, we will create filesystems on each of the four partitions we created.

fdisk is another, older, tool to view and modify partitions on disk. It is
limited to the msdos disk label.

root@opsschool ~# fdisk -l /dev/sdb

Disk /dev/sdb: 8589 MB, 8589934592 bytes
255 heads, 63 sectors/track, 1044 cylinders, total 16777216 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x0004815e

 Device Boot Start End Blocks Id System
 /dev/sdb1 * 2048 1953791 975872 83 Linux
 /dev/sdb2 1953792 9764863 3905536 83 Linux
 /dev/sdb3 9764864 13672447 1953792 83 Linux
 /dev/sdb4 13672448 16777215 1552384 83 Linux

The first partition, to contain /boot, will be ext2. Create this by running:

root@opsschool ~# mkfs.ext2 /dev/sdb1
mke2fs 1.42 (29-Nov-2011)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
61056 inodes, 243968 blocks
12198 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=251658240
8 block groups
32768 blocks per group, 32768 fragments per group
7632 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376

Allocating group tables: done
Writing inode tables: done
Writing superblocks and filesystem accounting information: done

The second and third partitions, to contain / and /var, will be ext4.
Create these by running:

root@opsschool:~# mkfs.ext4 /dev/sdb2
root@opsschool:~# mkfs.ext4 /dev/sdb3

The output of mkfs.ext4 is very close to the output of mkfs.ext2 and so
it is omitted.

Finally, /dev/sdb4 is set aside for swap space with the command:

root@opsschool:~# mkswap /dev/sdb4
Setting up swapspace version 1, size = 1552380 KiB
no label, UUID=cc9ba6e5-372f-48f6-a4bf-83296e5c7ebe

Mounting a filesystem

Mounting a filesystem is the act of placing the root of one filesystem on
a directory, or mount point, of a currently mounted filesystem. The mount
command allows the user to do this manually. Typically, only the superuser
can perform mounts. The root filesystem, mounted on /, is unique and
it is mounted at boot. See The Boot Process.

root@opsschool # mount -t ext4 -o noatime /dev/sdb1 /mnt

It is common to specify which filesystem type is present on /dev/sdb1 and
which mounting options you would like to use, but if that information is not
specified then the Linux mount command is pretty good at picking sane
defaults. Most administrators would have typed the following instead of the
above:

root@opsschool # mount /dev/sdb1 /mnt

The filesystem type refers to the format of the data structure that is used as
the filesystem on disk. Files (generally) do not care what kind of filesystem
they are on, it is only in initial filesystem creation, automatic
mounting, and performance tuning that you have to concern yourself with the
filesystem type. Example filesystem types are ext2, ext3, ext4, FAT, NTFS
HFS, JFS, XFS, ZFS, BtrFS. On Linux hosts, ext4 is a good default. For
maximum compatibility with Windows and Macintosh, use FAT.

http://en.wikipedia.org/wiki/Comparison_of_file_systems

The fstab, or file system table, is the file that configures automatic mounting
at boot. It tabulates block devices, mount points, type and options for each
mount. The dump and pass fields control booting behavior. Dumping is the act
of creating a backup of the filesystem (often to tape), and is not in common use.
Pass is much more important. When the pass value is nonzero, the filesystem is
analyzed early in the boot process by fsck, the file system checker, for errors.
The number, fs_passno, indicates priority. The root filesystem should always be
1, other filesystems should be 2 or more. A zero value causes checks to be
skipped, an option often used to accelerate the boot process. In /etc/fstab,
there are a number of ways to specify the block device containing the filesystem
. UUID, or universally unique identifier, is one common way in modern Linux
based systems to specify a filesystem.

root@opsschool # cat /etc/fstab

<file system> <mount point> <type> <options> <dump> <pass>
/dev/sda5 / ext4 errors=remount-ro 0 1
/dev/sda6 none swap sw 0 0
/dev/sda1 /boot/efi auto auto 0 0

This /etc/fstab file mounts /dev/sda5 on / using the ext4 filesystem
. If it encounters a filesystem corruption it will use the fsck utility
early in the boot process to try to clear the problem. If the physical disk
reports errors in writing while the filesystem is mounted, the os will remount
/ readonly. The /dev/sda6 partition will be used as swap. The
/dev/sda1 partition will be mounted on /boot/efi using autodetection, the
partition will not be scanned for filesystem errors.

root@opsschool # cat /etc/auto.master

/home -rw,hard,intr,nosuid,nobrowse bigserver:/exports/home/&
/stash ldap:ou=auto_stash,ou=Autofs,dc=example,dc=com -rw,hard,intr,nobrowse

The auto.master file controls the autofs service. It is another way to
tabulate filesystems for mounting. It is different from the /etc/fstab
because the filesystems listed in auto.master are not mounted at boot. The
automounter allows the system to mount filesystems on demand, then clean up those
filesystems when they are no longer being used. In this case, the system mounts
home directories for each user from a remote NFS server. The filesystem remains
unmounted until the user logs in, and is unmounted a short time after the user
logs out. The automounter is triggered by an attempt to cd into /home/<key>,
it will then attempt to find an nfs share on /exports/home/<key> and mount it
on /home/key, then allow the cd command to return successfully. The
/home example above is using the & expansion syntax, the second line is
using the LDAP syntax to look up a key under /stash/<key> in LDAP. LDAP will
be covered later in the curriculum. The auto.master file is known as
auto_master on FreeBSD, Solaris, and Mac OS X.

Filesystem options

Passing options to the mount command, or inserting them into the /etc/fstab file, control how the filesystem behaves.
Different filesystems at different versions support different options, but some options are ubiquitous.

async

The async option sets writing operations to the filesystem to be asynchronous.
This means that the cp command will exit normally before the entire copy is done, and that the system will persist the files to the disk at some point later on.
You don’t have a lot of guarantees here about when that will happen, though for a generally unloaded system you won’t have to wait long.
It is also hard to tell when the filesystem is actually done with the copy.
The sync utility can be used to force a filesystem sync to immediately persist to disk.
The opposite of this option, the sync option is the default on most filesystems.

noatime

The noatime option tells the filesystem not to keep track of atime or access time.
If you recall your inode lessons, you’ll remember that the inode keeps track of three dates: ctime (change time), mtime (modification time), and atime (access time).
Under normal circumstances, whenever a user reads from a file, the operating system will write a new atime to the inode.
For large groups of small files, read by a number of people, or by automated processes, this final write operation can hurt disk performance.
As a result, many admins will turn off atime on filesystems to increase performance.

Note that atime is not really a security/auditing feature. Any regular user can use the touch utility on a file to set the atime to some point in the past, if they have the appropriate permissions for that file.

Also note that contrary to popular belief, ctime does not store a file’s creation time.
The change time stored in ctime is when the file’s attributes or contents were changed, whereas the modification time stored in mtime only changes if the file’s contents are modified.

ro

The ro option, called ‘read-only’, tells the filesystem to not allow writes to any of the files on the filesystem.
This is useful for a legitimately read-only backing store such as a CD-ROM.
It is also useful for protecting the filesystem from yourself or others, such as when you are mounting a drive you pulled from a different machine.
If the filesystem is mounted read-only, you can’t accidentally delete any data off of it.
It is common for network shares to be mounted read-only, this way client machines can copy files from the network share, but can’t corrupt the share with write locks or deletes.
Sometimes, when the operating system detects that the block device (such as a hard drive) beneath the filesystem is beginning to fail, the operating system will remount the filesystem read-only.
This will cause lots of problems for your running system, but it is intended to give you the maximum amount of time to copy your important data off of the filesystem before the disks beneath it fail completely.
If this happens you can usually see it by checking mount for filesystems that should be read-write mounted as read-only.
You can also check dmesg for messages like:

root@opsschool # dmesg

[26729.124569] Write(10): 2a 00 03 96 5a b0 00 00 08 00
[26729.124576] end_request: I/O error, dev sda, sector 60185264
[26729.125298] Buffer I/O error on device sda2, logical block 4593494
[26729.125986] lost page write due to I/O error on sda2

These messages strongly indicate that the disk /dev/sda is dying.
In some cases you can recover the filesystem with the file system checker fsck.
You may also be able to force remount the filesystem read-write, as shown in the remount section below.

rw

The rw option, called ‘read-write’, tells the filesystem to allow reads and writes to all files on the filesystem.

Mounting a filesystem read-write is usually the default.
There are times where you will not be able to make a read-write mount, such as when the backing physical media is fundamentally read-only, like a CD-ROM.

remount

Sometimes a filesystem will be mounted read-only, either by default, or because the operating system has remounted it ro because of disk failures.
It is possible to remount the filesystem read-write with the following command:

root@opsschool ~# mount | grep boot
/dev/sda1 on /boot type ext3 (ro)
root@opsschool ~# mount -o remount,rw /boot
root@opsschool ~# mount | grep boot
/dev/sda1 on /boot type ext3 (rw)

The syntax of the remount option is -o remount,<option>.

noexec

The noexec option tells the filesystem to ignore the execute bit on a filesystem.
This would never work for the root filesystem, but it is often used as a security measure on world-writeable filesystems such as /tmp . Note that there are many ways to get around this restriction.

nosuid

Like the noexec option, the nosuid option ignores any setuserid bits set on files in the filesystem.
This is also used for security purposes.
It is generally recommended for removable devices such as CD-ROMs, USB sticks, and network filesystems.

nobarriers
rbind

How filesystems work

Files, directories, inodes

Inodes

What they contain, how they work

The POSIX standard dictates files must have the following attributes:

	File size in bytes.

	A device ID.

	User ID of file’s owner.

	Group ID of file.

	The file’s mode (permissions).

	Additional system and user flags (e.g. append only or ACLs).

	Timestamps when the inode was last modified (ctime), file content last modified/accessed (mtime/atime).

	Link count of how many hard links point to the inode.

	Pointers to the file’s contents.

http://en.wikipedia.org/wiki/Inode

File system layout

File system hierarchy standard is a reference on managing a Unix filesystem or directory structure.

http://www.pathname.com/fhs/

Fragmentation in unix filesystems

Filesystem objects

Filesystem contain more than just files and directories.
Talk about devices (mknod), pipes (mkfifo), sockets, etc.

Shells

What is a shell?

A [Li|U]nix shell is the command-line interface between the user and the system.
It is used to perform some action, specifically, typing commands and displaying
output, requested by the user.

Introduction to Bash

Bash is known as the Bourne-again shell, written by Brian Fox, and is a play
on the name of the previously named Bourne shell (/bin/sh) written by Steve
Bourne. 1

Shell Fundamentals

Command-line Editing Modes

Over time, as one progresses with using the shell, it will become necessary to execute
commands that may contain many arguments or have output piped to other commands. Beyond
simple commands such as cat and ls, it can be tedious should one need to re-type,
or, in most cases, edit, a given command. Luckily, bash provides a facility to make
this scenario easier: the command-line editing mode.

The command-line editing mode emulates the movement functions of two common text editors,
emacs and vi. In the case of the shell, the cursor’s movement is being controlled.

Todo

Tighten up the above sentence. It’s wordy and doesn’t seem to make the point I want it to make.

By default, bash operates in emacs mode.

Example Edit Commands

The following commands are very common while using the emacs mode.

	Ctrl-b: Move backward by one character

	Ctrl-f: Move forward by one character

	Ctrl-a: Move to the beginning of the line

	Ctrl-e: Move to the end of the line

	Ctrl-k: Delete from the cursor forward

	Ctrl-u: Delete from the cursor backward

	Ctrl-r: Search the command history

The following commands are very common while using the vi mode.

	h: Move backward by one character

	l: Move forward by one character

	w: Move forward by one word

	0: Move to the beginning of the line

	$: Move to the end of the line

	d$: Delete from the cursor to the end of the line

	d0: Delete from the cursor the beginning of the line

	:history s: Search the command history

Setting the Mode

One can manually set the desired mode using the below commands.

	emacs

set -o emacs

	vi

set -o vi

See Text Editing 101 for details on appropriate edit commands to use on
the command line.

Environment variables

Environment variables are used to define values for often-used attributes of a
user’s shell. In total, these variables define the user’s environment. Some
environment variables provide a simple value describing some basic attribute,
such the user’s current directory ($PWD). Others define the behavior of a
command, such as whether or not the history command should log repeated
commands individually or log the repeated command once ($HISTCONTROL).

$PATH

The most common, or most recognized, environment variable is the $PATH
variable. It defines the set of directories that the shell can search to find a
command. Without an explicit path provided when calling a command (i.e. /bin/ps),
the shell will search the directories listed in the $PATH variable until it
finds the command. If the command is not found in any of the defined directories
in $PATH, the shell will produce an error explaining as much.

$ foobar -V
-bash: foobar: command not found

To view the contents of the $PATH variable, use echo to print the variable’s value:

$ echo $PATH
/usr/local/sbin:/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/bin

The order of the directories in the $PATH variable, from left to right, is
important; when searching directories for a command, the shell will stop looking
after it finds its first match.
In other words, using our example $PATH variable above, if there is a
version of ps that exists in /usr/local/bin that is preferred (by the sysadmin)
over the version that exists in /bin, the shell will still execute /bin/ps
due to the precedence of the directories defined in the $PATH variable.

To list all of the shell’s environment variables, use the env command:

$ env
HOSTNAME=foobar
SHELL=/bin/bash
TERM=xterm
HISTSIZE=1000
USER=root
PATH=/usr/local/sbin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin:/usr/local/bin
MAIL=/var/spool/mail/root
PWD=/root/curriculum
PS1=[\[\e[33;1m\]\t \[\e[31;1m\]\u\[\e[0m\]@\[\e[31;1m\]\h\[\e[0m\] \W\[\e[0m\]]#
HISTCONTROL=ignoredups
SHLVL=1
SUDO_COMMAND=/bin/bash
HOME=/root
HISTTIMEFORMAT=[%Y-%m-%d %H:%M:%S]
OLDPWD=/tmp

Shell Profiles

Shell profiles are used to define a user’s environment. In cases where an environment variable
needs to be set or a script needs to be run at login, a profile can be used to ensure this
happens consistently and automatically. Anything that can be run in a standalone shell
script can be placed in a profile.

There are two types of profiles:

	Global profile (/etc/profile)

	User profile (~/.bash_profile)

/etc/profile

This is the global profile. Any environment variable set in this file applies to all users.
Any script called from this file is executed for all users.

~/.bash_profile

This is the user profile. Any environment variable set in this file applies to the user only.
Any script called from this file is executed for the user only.

Profile Precedence

NOTE: It is possible to override settings from /etc/profile via ~/.bash_profile as ~/.bash_profile
is executed after /etc/profile.

Special Environment Variables

Certain variables exist that provide useful information about what is happening in the environment.
For example, it may be necessary to know the ID of a running process or the exit status of an executed command.

Process ID: $$

To determine the process ID (PID) of the current shell, first run ps to find the PID, then run echo $$
to confirm the PID.

$ ps -efl | grep bash
 502 20440 20439 0 10:25PM ttys001 0:00.01 -bash 4006 31 0 2433436 1228 - S 0
 502 20447 20440 0 10:29PM ttys001 0:00.00 grep bash 4006 31 0 2432768 620 - R+ 0
$ echo $$
20440

Background Process ID: $!

Occasionally, commands will need to be executed in the background (via the & operator). The PID of that process
can be found using the $! variable. For example, call sleep for 30 seconds and place it in the background.
Then echo $! to see the PID. Alternatively, call ps to confirm the PID.

$ sleep 30 &
[1] 20450
$ echo $!
20450
$ ps -efl | grep sleep
502 20450 20440 0 10:33PM ttys001 0:00.00 sleep 30 4006 31 0 2432748 496 - S 0

Exit Status: $?

When a command is executed, it always has an exit status. That status defines whether or not the command was successful.
For success, the exit status is 0. Non-zero values denote failure. Many commands provide multiple exit codes to help
define what the reason for failure was. This helps the user troubleshoot any problems.

As an example, try to list a known file within a user’s home directory, then list a file that is known not to exist.
After each command, execute echo $? to see the exit status.

$ ls .bash_profile
.bash_profile
$ echo $?
0
$ ls foobar
ls: foobar: No such file or directory
$ echo $?
1

History

The history is a handy facility within bash; it stores all of the commands that the user has executed.

To see the history, simply type history and all of the stored commands will be displayed to the terminal.
Similarily, run cat ~/.bash_history to see all stored commands.

Re-executing Commands

A benefit of storing command history is that the commands can be easily recalled. To execute the last command,
type !!:

$ ls
file1 file2 dir1
$!!
ls
file1 file2 dir1

Note that the last command is echoed just above the output of that command.

To execute the nth command in history, run !n where n is the line number of the command as found in the
output of history:

$ history | less
 1 ls -la
 2 ls -F
 3 pwd
$!2
ls -F
file1 file2 dir1/

Searching History

Finally, one can search the history by typing Ctrl-r followed by a string to match a command:

$ (reverse-i-search)`ls': ls -F

To execute the command (if a match is found), simply type Enter.

Job control

From time to time, it may be necessary to manage commands running in the background. These are typically referred to as jobs.
A command can be placed in the background via the & operator. Use the jobs command to see the job in the background.
To bring it back to the foreground, run fg:

[23:24:22 ~]$ sleep 30 &
[1] 20969
[23:24:26 ~]$ jobs
[1]+ Running sleep 30 &
[23:24:29 ~]$ fg
sleep 30
[23:24:56 ~]$

While in the foreground, the job can be suspended via Ctrl-z and sent to the background once more using bg:

[23:24:56 ~]$ sleep 30 &
[1] 21078
[23:28:25 ~]$ jobs
[1]+ Running sleep 30 &
[23:28:27 ~]$ fg
sleep 30
^Z
[1]+ Stopped sleep 30
[23:28:33 ~]$ bg
[1]+ sleep 30 &
[23:28:37 ~]$ jobs
[1]+ Running sleep 30 &
[23:29:39 ~]$ jobs
[1]+ Done sleep 30

Multiple Jobs

It is possible to have multiple jobs running in the background at the same time. Use the jobs command to track them
via their job ID, noted between the square brackets after sending a job to the background. Knowing the job ID is helpful in
the event that the job needs to be pulled into the foreground (via fg) or if the job needs to be killed:

[23:36:01 ~]$ sleep 120 &
[1] 21086
[23:36:16 ~]$ sleep 240 &
[2] 21087
[23:36:20 ~]$ jobs
[1]- Running sleep 120 &
[2]+ Running sleep 240 &
[23:36:21 ~]$ fg %1
sleep 120
^C
[23:36:33 ~]$ jobs
[2]+ Running sleep 240 &
[23:36:35 ~]$ kill %2
[23:36:39 ~]$ jobs
[2]+ Terminated: 15 sleep 240

NOTE: When manipulating jobs with any command, the jobs are described by their ID using the %n notation
where n is the job ID.

For information on ensuring running jobs continue, even when terminal
connectivity is lost, see the sections on GNU Screen and Tmux.

Footnotes

	1

	C Programming by Al Stevens [http://www.drdobbs.com/i-almost-get-a-linux-editor-and-compiler/184404693], Dr. Dobb’s Journal, July 1, 2001

Package management

Workflow

What is a package manager?

Modern operating systems use package managers to take care of the installation,
maintenance and removal of software. On Windows this is Windows Installer [http://en.wikipedia.org/wiki/Windows_Installer] (formerly Microsoft
Installer). On Linux there are two popular package managers:

	APT (used by Debian, Ubuntu)

	RPM (RedHat, CentOS, Fedora, SuSe)

Specific commands for each system vary, but at their core they all provide the
same functionality:

	Install and uninstall packages

	Upgrade packages

	Install packages from a central repository

	Search for information on installed packages and files

RPM and yum (RedHat, CentOS, Fedora, Scientific Linux)

In the following examples, we will be using the package dstat. The
process however applies to any software you may want to install.

Yum provides a wrapper around RPM, which can be used to search for, and install
packages from multiple package repositories. It also resolves dependencies, so
that if a package has prerequisites, they will be installed at the same time.

If your Linux distribution uses RPM and yum, you can search for packages
by running:

bash-4.0$ yum search dstat
======================== N/S Matched: dstat =========================
dstat.noarch : Versatile resource statistics tool

Installing packages

You can install a package using yum, by running:

bash-4.0$ yum install dstat

===
 Package Arch Version Repository Size
===
Installing:
 dstat noarch 0.7.0-1.el6 CentOS-6 144 k

Transaction Summary
===
Install 1 Package(s)

Total download size: 144 k
Installed size: 660 k
Is this ok [y/N]:

If you have a downloaded RPM file, you can also install the package directly
with the rpm command:

bash-4.0$ rpm -i dstat-0.7.0-1.el6.noarch.rpm

Upgrading packages

RPM and yum both make it easy to upgrade existing packages, too.
Over time, new packages may be added to the yum repositories that are configured
on your system, or you may have a newer RPM for an already installed package.

To upgrade a package using yum, when a newer package is available, simply ask yum
to install it again:

bash-4.0$ yum install dstat

To upgrade all packages that have newer versions available, run:

bash-4.0$ yum upgrade

To upgrade a package with an RPM file, run:

bash-4.0$ rpm -Uvh dstat-0.7.1-1.el6.noarch.rpm

Uninstalling packages

To uninstall a package using yum, run:

bash-4.0$ yum remove dstat

Similarly, you can uninstall a package with rpm:

bash-4.0$ rpm -e dstat

Cleaning the RPM database

You can clean the RPM database, forcing it to refresh package metadata from its
sources on next install or upgrade operation.

bash-4.0$ yum clean all

Querying the RPM database

Occasionally you will want to find out specific information regarding installed
packages. The -q option to the rpm command comes in handy here. Let’s
take a look at a few examples:

One common task is to see if you have a package installed. The -qa option
by itself will list ALL installed packages. You can also ask it to list specific
packages if they are installed:

bash-4.0$ rpm -qa dstat
dstat-0.7.0-1.el6.noarch

Now let’s say we want to list all of the files installed by a package. The
-ql option is the one to use:

bash-4.0$ rpm -ql dstat
/usr/bin/dstat
/usr/share/doc/dstat-0.7.0
/usr/share/doc/dstat-0.7.0/AUTHORS
/usr/share/doc/dstat-0.7.0/COPYING
/usr/share/doc/dstat-0.7.0/ChangeLog
...

We can also do the reverse of the previous operation. If we have a file, and
want to known which package it belongs to:

bash-4.0$ rpm -qf /usr/bin/dstat
dstat-0.7.0-1.el6.noarch

Creating packages

Todo

Mention spec files and roughly how RPMs are put together.

Todo

Then introduce FPM and tell them not to bother with spec files yet.

There are two todos here.

dpkg and APT (Debian, Ubuntu)

In the following examples, we will be using the package dstat in our examples. The
process however applies to any software you may want to install.

apt provides a wrapper around dpkg, which can be used to search for, and install
packages from multiple package repositories.

If your Linux distribution uses dpkg and apt, you can search for packages
by running:

bash-4.0$ apt-cache search dstat
dstat - versatile resource statistics tool

Installing packages

You can install a package through apt, by running:

bash-4.0# apt-get install dstat

The following NEW packages will be installed:
 dstat
0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.
Need to get 0 B/79.3 kB of archives.
After this operation, 351 kB of additional disk space will be used.
Selecting previously unselected package dstat.
(Reading database ... 124189 files and directories currently installed.)
Unpacking dstat (from .../archives/dstat_0.7.2-3_all.deb) ...
Processing triggers for man-db ...
Setting up dstat (0.7.2-3) ...

If you have a downloaded DEB file, you can also install the package directly
with the dpkg command:

bash-4.0# dpkg -i dstat_0.7.2-3_all.deb

Upgrading packages

dpkg and APT both make it easy to upgrade existing packages, too.
Over time, new packages may be added to the apt repositories that are configured
on your system, or you may have a newer deb for an already installed package.

To upgrade using apt, when a newer package is available, simply ask apt to
install it again:

bash-4.0# apt-get install dstat

To upgrade a package with an deb file, run:

bash-4.0# dpkg -i dstat_0.7.2-3_all.deb

Uninstalling packages

To uninstall a package using apt, run:

bash-4.0# apt-get remove dstat

Similarly, you can uninstall a package with dpkg:

bash-4.0# dpkg -r dstat

With APT and dpkg, removing a package still leaves behind any configuration
files, in case you wish to reinstall the package again later. To fully delete
packages and their configuration files, you need to purge:

bash-4.0# apt-get purge dstat

or:

bash-4.0# apt-get --purge remove dstat

or:

bash-4.0# dpkg -P dstat

Querying the dpkg database

Occasionally you will want to find out specific information regarding installed
packages. The dpkg-query command has many options to help. Let’s
take a look at a few examples:

One common task is to see if you have a package installed. The -l option
by itself will list ALL installed packages. You can also ask it to list specific
packages if they are installed:

bash-4.0$ dpkg-query -l dstat
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-aWait/Trig-pend
|/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)
||/ Name Version Architecture Description
+++-==============-============-============-==================================
ii dstat 0.7.2-3 all versatile resource statistics tool

Now let’s say we want to list all of the files installed by a package. The
-L option is the one to use:

bash-4.0$ dpkg-query -L dstat
/.
/usr
/usr/bin
/usr/bin/dstat
/usr/share
...

We can also do the reverse of the previous operation. If we have a file, and
want to know to which package it belongs:

bash-4.0$ dpkg-query -S /usr/bin/dstat
dstat: /usr/bin/dstat

The Boot Process

The boot process of a modern system involves multiple phases.
Here we will discuss each step, how it contributes to the boot process, what can
go wrong and things you can do to diagnose problems during booting.

Learning the details of the boot process will give you a strong understanding of
how to troubleshoot issues that occur during boot - either at the hardware level
or at the operating system level.

You should read this document first, and then power on a computer.
Note each of the phases described in this section. Some of them will last many
seconds, others will fly by very quickly!

The following components are involved in the boot process. They are each
executed in this order:

	Power Supply Unit

	BIOS and CMOS

	POST tests

	Reading the Partition Table

	The Bootloader

	The Kernel and the Ramdisk

	OS Kernel and Init

	Runlevels

	Getty

Power Supply Unit

When the power button is pressed, an electric circuit is closed which causes the
power supply unit to perform a self test. In order for the boot process to
continue, this self test has to complete successfully. If the power supply
cannot confirm the self test, there will usually be no output at all.

Most modern x86 computers, especially those using the ATX [http://en.wikipedia.org/wiki/ATX] standard, will have two main connectors to
the motherboard: a 4-pin connector to power the CPU, and a 24-pin connector to
power other motherboard components. If the self test passes successfully, the
PSU will send a signal to the CPU on the 4-pin connector to indicate that it
should power on.

Possible failures:

	If the PSU is unable to perform a good self test, the PSU may be damaged. This
could be caused by a blown fuse, or other damage caused by over-/under-current
on the power line. Using a UPS or a good surge protector is always
recommended.

BIOS and CMOS

At its core, the Basic Input/Output System (BIOS) is an integrated circuit
located on the computer’s motherboard that can be programmed with firmware.
This firmware facilitates the boot process so that an operating system
can load.

Let’s examine each of these in more detail:

	Firmware is the software that is programmed into Electrically Erasable
Programmable Read-Only Memory (EEPROM). In this case, the firmware facilitates
booting an operating system and configuring basic hardware settings.

	An integrated circuit (IC) is what you would likely think of as a
stereotypical “computer chip” - a thin wafer that is packaged and has metal
traces sticking out from it that can be mounted onto a printed circuit board.

Your BIOS is the lowest level interface you’ll get to the hardware in your
computer. The BIOS also performs the Power-On Self Test, or POST.

Once the CPU has powered up, the first call made is to the BIOS.
The first step then taken by the BIOS is to ensure that the minimum required
hardware exists:

	CPU

	Memory

	Video card

Once the existence of the hardware has been confirmed, it must be configured.

The BIOS has its own memory storage known as the CMOS (Complementary
Metal Oxide Semiconductor). The CMOS contains all of the settings the
BIOS needs to save, such as the memory speed, CPU frequency
multiplier, and the location and configuration of the hard drives and
other devices.

The BIOS first takes the memory frequency and attempts to set that on the memory
controller.

Next the BIOS multiplies the memory frequency by the CPU frequency multiplier.
This is the speed at which the CPU is set to run. Sometimes it is possible to
“overclock” a CPU, by telling it to run at a higher multiplier than it was
designed to, effectively making it run faster. There can be benefits and risks
to doing this, including the potential for damaging your CPU.

POST tests

Once the memory and CPU frequencies have been set, the BIOS begins the Power-On
Self Test (POST). The POST will perform basic checks on many system components,
including:

	Check that the memory is working

	Check that hard drives and other devices are all responding

	Check that the keyboard and mouse are connected (this check can usually be
disabled)

	Initialise any additional BIOSes which may be installed (e.g. RAID cards)

Possible failures:

In the event that a POST test fails, the BIOS will normally indicate failure
through a series of beeps on the internal computer speaker. The pattern of the
beeps indicates which specific test failed. A few beep codes are common across
systems:

	One beep: All tests passed successfully (Have you noticed that your computer
beeps once when you press the power button? This is why!)

	Three beeps: Often a memory error

	One long, two short beeps: Video card or display problem

Your BIOS manual should document what its specific beep codes mean.

Reading the Partition Table

The next major function of the BIOS is to determine which device to use to
start an operating system.

A typical BIOS can read boot information from the devices below, and will
boot from the first device that provides a successful response. The order of
devices to scan can be set in the BIOS:

	Floppy disks

	CD-ROMs

	USB flash drives

	Hard drives

	A network

We’ll cover the first four options here. There’s another section that
deals with booting over the network.

There are two separate partition table formats: Master Boot Record (MBR) and
the GUID Partition Table (GPT). We’ll illustrate how both store data about
what’s on the drive, and how they’re used to boot the operating system.

Master Boot Record (the old way)

Once the BIOS has identified which drive it should attempt to boot from, it
looks at the first sector on that drive. These sectors should contain the Master
Boot Record.

The MBR has two component parts:

	The boot loader information block (448 bytes)

	The partition table (64 bytes)

The boot loader information block is where the first program the computer can
run is stored. The partition table stores information about how the drive is
logically laid out.

The MBR has been heavily limited in its design, as it can only occupy the first
512 bytes of space on the drive (which is the size of one physical sector).
This limits the tasks the boot loader program is able to do. The execution of
the boot loader literally starts from the first byte. As the complexity of
systems grew, it became necessary to add “chain boot loading”. This allows the
MBR to load an another program from elsewhere on the drive into memory. The new
program is then executed and continues the boot process.

If you’re familiar with Windows, you may have seen drives labelled as “C:” and
“D:” - these represent different logical “partitions” on the drive. These
represent partitions defined in that 64-byte partition table.

GPT - The GUID Partition Table (the new way)

The design of the IBM-Compatible BIOS is an old design and has
limitations in today’s world of hardware. To address this, the United
Extensible Firmware Interface (UEFI) was created, along with GPT, a
new partition format.

There are a few advantages to the GPT format, specifically:

	A Globally-Unique ID that references a partition, rather than a partition
number. The MBR only has 64 bytes to store partition information - and each
partition definition is 16 bytes. This design allows for unlimited partitions.

	The ability to boot from storage devices that are greater than 2 TBs, due to
a larger address space to identify sectors on the disk. The MBR simply had no
way to address disks greater than 2 TB.

	A backup copy of the table that can be used in the event that the primary
copy is corrupted. This copy is stored at the ‘end’ of the disk.

There is some compatibility maintained to allow standard PCs that are using
an old BIOS to boot from a drive that has a GPT on it.

The Bootloader

The purpose of a bootloader is to load the initial kernel and supporting modules
into memory.

There are a few common bootloaders. We’ll discuss the GRand Unified
Bootloader (GRUB), a bootloader used by many Linux distributions today.

GRUB is a “chain bootloader,” meaning it initializes itself in stages. These stages are:

	Stage 1 - This is the very tiny application that can exist in that first
part of the drive. It exists to load the next, larger part of GRUB.

	Stage 1.5 - Contains the drivers necessary to access the filesystem with
stage 2.

	Stage 2 - This stage loads the menu and configuration options for GRUB.

On an MBR-formatted drive and standard BIOS

These stages must fit in that first 448 bytes of the boot loader information
block table. Generally, Stage 1 and Stage 1.5 are small enough to exist in that
first 448 bytes. They contain the appropriate logic that allow the loader to
read the filesystem that Stage 2 is located on.

On a GPT-formatted drive and UEFI

UEFI motherboards are able to read FAT32 filesystems and execute code.
The system firmware looks for an image file that contains the boot code
for Stages 1 and 1.5, so that Stage 2 can be managed by the operating
system.

The Kernel and the Ramdisk

The kernel is the main component of any operating system. The kernel
acts as the lowest-level intermediary between the hardware on your
computer and the applications running on your computer. The kernel
abstracts away such resource management tasks as memory and
processor allocation.

The kernel and other software can access peripherals such as disk
drives by way of device drivers.

So what, then, is this Initial RAM Filesystem, or Ramdisk?

You can imagine there are tens of thousands of different devices in the world.
Hard drives made with different connectors, video cards made by different
manufacturers, network cards with special interfaces. Each of these needs its
own device driver to bridge the hardware and software.

For our small and efficient little boot process, trying to keep every possible
device driver in the kernel wouldn’t work very well.

This lead to the creation of the Initial RAM disk as a way to provide module
support to the kernel for the boot process. It allows the kernel to load just
enough drivers to read from the filesystem, where it can find other specific
device drivers as needed.

With the kernel and ramdisk loaded into memory, we can attempt to access the
disk drive and continue booting our Linux system.

OS Kernel and Init

The organizational scheme for determining the load order for system
services during the boot process is referred to as an init system.
The traditional and still most common init system in Linux is called
“System V init”.

After the initial ramdisk sets the stage for the kernel to access the hard
drive, we now need to execute the first process that will essentially
“rule them all” - /bin/init.

The init process reads /etc/inittab to figure out what script should be run to
initialize the system. This is a collection of scripts that vary based on the
desired “runlevel” of the system.

Runlevels

Various runlevels have been defined to bring the system up in different
states. In general, the following runlevels are consistent in most Linux
distributions:

	0: Halt the system

	1: Single User Mode

	6: Reboot the machine

Across distributions there can be various meanings for runlevels 2-5.
RedHat-based distributions use runlevel 3 for a multiuser console
environment and 5 for a graphical-based environment.

Multiuser vs. Single user runlevels

As the name implies, in some runlevels multiple users can use the machine, versus
one user in single user mode. So why does single user mode exist, anyways?

In multiuser runlevels, the system boots as normal. All standard
services such as SSH and HTTP daemons load in the order defined in the
init system. The network interfaces, if configured, are enabled. It’s
business as usual if you’re booting to a multiuser runlevel.

Conversely, single user mode has the bare minimum of services enabled
(notably there is no networking enabled), making it useful for
troubleshooting (and not much else).

You will need (or involuntarily find yourself in) single user mode
when something breaks: something you configured interferes with the
boot process and you need to turn it off, or perhaps a key filesystem
is corrupt and you need to run a disk check.

In single user mode, the only available access is via the console,
although that need not be limited to physical presence. Remote console
access by way of serial consoles and similar devices is a common
management tool for data centers.

Getty

Todo

Check this section. I think i’ve got it down, but I’m not super
familiar with this part.

After all the system initialization scripts have run, we’re ready to present the
user with a prompt to login. The method of doing this is to provide a login prompt
on a “TTY” which is short for teletype. This is a holdover from the days that a
user running a Unix-based operating system sat at a serially-connected teletype
machine. A TTY can be a physical or virtual serial console, such as the
various terminals you’d be presented with if you used ALT+F# on the console of a
Linux machine.

Getty is often used to continuously spawn /bin/login, which reads
the username and password of the user and, if authentication succeeds,
spawn the user’s preferred shell. At this point, the boot and login
process has completed.

Useful shell tools

When you work in a unix environment, you will need to make frequent use of the command line tools available to you in order to complete the tasks you have.

The Unix Philosophy

Unix is characterized by its modular design philosophy.
Unix programs are small, single purpose tools that can easily be chained together with other Unix programs.
This modular approach allows for a much simpler, more flexible system, since you can combine multiple command line programs to solve a unique problem, without having to write a whole new program to get the job done.

Working with your system

ps

ps shows the processes currently running on the system.
ps takes many arguments but some good recipes are ps aux to see all processes from a user standpoint, whether they have a tty or not.
Also good is ps -lfU <username> to see all processes owned by <username> in long format.
ps has output formatting with the -o switch and works well with grep.
pgrep combines ps and grep into one command.

$ ps aux | grep vim
opsschool 5424 1.1 0.2 247360 10448 pts/0 Sl+ 17:01 0:00 vim shell_tools_101.rst
opsschool 5499 0.0 0.0 13584 936 pts/5 S+ 17:01 0:00 grep --color=auto vim

Note that the grep command also shows up in the process table.

top

top shows the top most cpu intensive processes in a table form with system stats summarized at the top.
It refreshes every 1 second.
By pressing m while running, top will sort not by processor use but by memory use.

df

df looks at all your mounted filesystems and reports on their status.
This includes the filesystem type, total size, available space, percent used, and mountpoint.
df -h will show the sizes in human readable form.
df -h . will show only the filesystem the current working directory is on, very useful when debugging nfs and autofs mounts.

$ df -h .
Filesystem Size Used Avail Use% Mounted on
/dev/sda5 43G 31G 9.6G 77% /

du

du estimates the size on disk of a file or files.
du -h returns the usage information in human readable format.
If the argument to du is a directory, du will run and return a new value for each file in that directory, recursing into subdirectories as well.
du -sh can be run on a directory to prevent this behavior and return the sum of the space on disk of all files under that directory.

$ du -sh drawing.svg
24K drawing.svg
4.0K style.css
20K sitemeter.js

find

find is for finding files on the system.
find . recursively walks the entire filesystem tree below the current working directory and prints out each file by its relative path.
find . -name 'opsschool' again recursively walks the entire filesystem tree, but only prints out files named opsschool.
find . -name 'opsschool' -type d prints out only directories and -type f prints out only regular files.
The -name filter also accepts wildcards.
find . -name '*.html' will print out all files ending in .html.
As you become more skilled at Unix/Linux, use the find command often, as it becomes more and more useful with experience.

kill

kill is used to send a signal to a process, which is a way of interrupting it.
The most common use of this is to stop, or kill, processes. For example, to stop a process with the PID ‘123’:

$ kill 123

Once the signal is sent the process can decide what to do with it.
For instance the above kill 123 sends a TERM signal to the process with PID 123.
TERM (also known as SIGTERM) means “Software Termination Signal”.
Some processes will notice that signal, finish what they are doing, and shut down.
Others will just shut down immediately or ignore it entirely.

There are many more types of signals.
(Check out man signal for a good list.)
For instance, if the above kill command did not succeed in terminating your process, a more heavy-handed option is to send a KILL signal to the process:

$ kill -KILL 123

Every signal has a name and a number. You can reference them by either one.
Another way of running kill -KILL is:

$ kill -9 123

Be careful when using the KILL signal as it is the one signal that cannot be caught by the process.
It will not have a chance to gracefully shut down.
This can lead to temporary files not being removed, open files not being closed, or even corruption of database files.

Signals can be used in a wide variety of ways, not just for terminating processes.
One interesting use: if your system is running Unicorn processes, you can send a TTIN signal to the master process and it will spawn an additional worker.
Likewise, you can send a TTOU signal and it will remove one of the workers.
Another example is Apache HTTPD Web Server which accepts USR1, which causes it to close and re-open log files, which is useful when you need to rotate your log files.

For more on signals see Signals.

ls

ls is used to list the contents of a directory.
It’s most basic usage would be to list the contents of your shell’s current working directory:

$ ls
bar foo

You can also pass a directory name to the ls command and it will list the contents of that directory:

$ ls /usr/local
bin etc games include lib libexec sbin share src

There are a number of options that can be passed to the ls command to control both what is output and how it’s formatted.
Files and directories that begin with a ‘.’ are referred to as hidden files.
Two of the more useful options are: -a and -l:

	ls -a will list these hidden files and directories.

	ls -l outputs what’s called a long listing, where various attributes are given in addition to the filenames.

Example of using both:

$ ls -la
total 26636
drwx-----x. 39 luser luser 4096 Jun 28 01:56 .
drwxr-xr-x. 4 root root 4096 Dec 11 2012 ..
drwxrwxr-x 7 luser luser 4096 May 23 00:40 Applications
-rw-------. 1 luser luser 16902 Jun 28 01:33 .bash_history
-rw-r--r--. 1 luser luser 18 May 10 2012 .bash_logout
-rw-r--r--. 1 luser luser 176 May 10 2012 .bash_profile

In a long listing the first field lists the file type, its permissions, and also any special attributes it might have.
The very first letter in the first field indicates the file type.
Notice directories are indicated by a “d” and regular files are indicated by a “-“.
After the first field, from left to right the fields are filetypeattributespermissions, links, owner, group, file size, modification date, and file name.

Notice also the files named “.” and “..”.
These are the current directory and the directory up one level, respectively.

lsof

lsof lists open files.
This command can be very useful in examining what a particular process or user happens to be doing on a system.
For each open file information is listed such as the process id that holds the file open, the command that started the process, and the name of the user running the process.

lsof doesn’t just list regular files.
Of particular use is examing what network activity is currently going on.
This can be viewed with by issuing lsof -i.

man

The man command is used to access the man pages.
A man page, short for manual page, is documentation on a particular aspect of your operating system, be it a command, a configuration file, or even functions from a library for a programming language.
To access a man page, simply type the man command followed by the name of the command, file, etc. that you want to view documentation on.
In the old days these manuals were hardcopy and on some systems (e.g. Solaris) you will still see evidence of their page layout.
There are man pages for most, if not all, programs on your system.
If you install new software from a package manager, usually new man pages will be installed.
When man is invoked, it will display the man page to you, when you press ‘q’, the page will disappear.

The man pages are split up into different sections based on their types.
For example if you access the bash man page, at the very top you will see “BASH(1)”, indicating that the bash manual is in section 1: general commands.
Depending on what you’re trying to access, you may have to include a section number when you run man.
For example man printf will show you the printf commands man page.
But if instead you were wanting to view documentation on the C printf function you would type man 3 printf as section 3 contains documentation on library functions.

The man page sections are as follows:

	Section 1: General commands

	Section 2: System calls (functions provided by the kernel)

	Section 3: Library functions (functions within program libraries)

	Section 4: Special files (usually found in /dev)

	Section 5: File formats and conventions (eg /etc/passwd)

	Section 6: Games and screensavers

	Section 7: Miscellaneous

	Section 8: System administration commands

To search through the man pages run either man -k or apropos followed by your search term.
This will return a list of man pages who’s descriptions match your search term.

The info command is another way to find out information about the system and its utilities.
Most system administrators are comfortable with the ‘basics’ of their core command set, but are frequently checking the man pages to look up odd flags and functionality.

mount

The mount command is used to mount filesystems.
For example, mounting an ext4 filesystem that resides on the /dev/sda2 partition could be done as follows: mount -t ext4 /dev/sda2 /mnt
In this example the “-t” switch tells the mount command that the filesystem type is ext4.

When passed no arguments the mount command lists the filesystems that are currently mounted:

$ mount
/dev/sda2 on / type ext4 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
tmpfs on /dev/shm type tmpfs (rw)
/dev/sda1 on /boot type ext4 (rw)

The mount command will also consult /etc/fstab and if it’s able to and use the entries and options it finds there.
If an entry for /home exists in /etc/fstab one would be able to simply issue the command mount /home.
This command would mount whatever partition is found that is associated with the /home entry in /etc/fstab, and use any options that happen to be present.

Items to you wish to mount don’t necessarily have to be a partition on a disk to be mounted either.
Mounting an ISO file, an image of a optical disk, is especially handy: mount -o loop -t iso9660 /home/luser/installer.iso /mnt/cdrom

mount can also operate on currently mounted filesystems.
Of particular use is switching a currently mounted filesystem from read-write to read-only so that a filesystem check can be performed: mount -o remount,ro /
This particular command tells mount to remount the currently mounted / filesystem as read-only.

There are quite a number of options that can be passed to the mount command’s “-o” switch.
Some are filesystem independent, while others depend entirely on the type of filesystem that’s being mounted.
Further documentation on either can be found in the man pages.

stat

Todo

stat command

vmstat

Todo

vmstat command

strace

Todo

strace command

ulimit

Todo

ulimit command

Extracting and manipulating data

A very common pattern in unix is to take some data (a text file, a directory listing, the output from a command) and either extract specific data from it, change some of the data, or both.
These tools help you when you do this.

cat

cat outputs the contents of a file either to the shell, another file that already exists, or a file that does not yet exist.

Perhaps most frequently, cat is used to print the contents of a file to the shell.
For example, if file foo.txt contains the word ‘foo’:

$ cat /tmp/foo.txt
foo

When cat is called on multiple files, the output is in the same order as the files.
If we have another file bar.txt that contains ‘bar’ and run:

$ cat /tmp/foo.txt /home/jdoe/bar.txt
foo bar

If you want to combine the contents of the two files:

$ cat /tmp/foo.txt /home/jdoe/bar.txt > /home/jdoe/foobar.txt
$ cat /home/jdoe/foobar.txt
foo
bar

It is important to note that foobar.txt did not exist before running this command.
For this particular usage, cat can create a file “on the fly”.

cat can also be used to output the contents of one file to another file.

Warning

You should be careful when using cat this way since it will overwrite the contents of the receiving file.

$ cat /tmp/foo.txt > /home/jdoe/bar.txt
$ cat /home/jdoe/bar.txt
foo

There are many tools that you may use to parse the output of files, and since cat can provide a comfortable input method for other tools, it is not always necessary.
Read more on Useless Use of cat [http://en.wikipedia.org/wiki/Cat_(Unix)#Useless_use_of_cat].

cut

The cut utility cuts out selected portions of each line and writes them to the standard output.

As an example, let’s take a file students.txt that stores a list of student names, ages and email addresses in columns separated by a tab:

$ cat students.txt
John Doe 25 john@example.com
Jack Smith 26 jack@example.com
Jane Doe 24 jane@example.com

Here, you can see that the first two columns contain the student’s name, the third has an age and the fourth, an email address.
You can use cut to extract just the student’s first name and email like this:

$ cut -f1,4 students.txt
John john@example.com
Jack jack@example.com
Jane jane@example.com

The flag, -f is used to select which fields we want to output.

cut, by default, uses tab as a delimiter, but we can change that by using the -d flag.

Suppose the students.txt instead stores data like this:

$ cat students.txt
John Doe|25|john@example.com
Jack Smith|26|jack@example.com
Jane Doe|24|jane@example.com

Now, if the | character is used as a delimiter, the first column would be the student’s full name:

$ cut -f1 -d| students.txt
John Doe
Jack Smith
Jane Doe

If you want to use the space to delimit strings, you would do it like so:

$ cut -f1 -d' ' students.txt
John
Jack
Jane

cut also has some other options. If you have some input with fixed width columns, you can use -c to break them apart.
For example, to show the login names and times of the currently logged in users:

$ who | cut -c 1-9,19-30
mike Aug 1 23:42
mike Aug 5 20:58
mike Aug 22 10:34
mike Aug 6 19:18

You might have to change some of the character positions to make it work on your system.

grep

grep matches patterns in files.
Its name comes from the ed command g/re/p (globally search a regular expression and print the results).
grep looks for the given pattern in the specified file or files and prints all lines which match.

Grep is an excellent tool for when you know the approximate location of the information you want and can describe its structure using a regular expression.

As you can learn from grep’s man page, it takes some options, a pattern, and a file or list of files.
The files can be specified by ordinary shell globbing [http://tldp.org/LDP/abs/html/globbingref.html], such as using *.log to refer to all files in the current directory whose names end in .log.

Grep’s options allow you to customize what type of regular expressions you’re using, modify which matches are printed (such as ignoring capitalization or printing only the lines which don’t match), and control what’s printed as output.
This post [http://lists.freebsd.org/pipermail/freebsd-current/2010-August/019310.html] explains some of the optimizations which allow GNU grep to search through large files so quickly, if you’re interested in implementation details.

Intro to Regular Expressions

If you’re looking for a specific string, either a word or part of a word, the pattern is just that string.
For example, let’s say that I vaguely recall someone telling me about OpsSchool on IRC, and I’d like to find the article that they linked me to.
I think that it was mentioned in a channel called #cschat:

user@opsschool ~$ grep opsschool \#cschat.log
 23:02 < nibalizer> http://www.opsschool.org/en/latest/

That’s the only place that ‘opsschool’ was mentioned.
Since grep is case-sensitive by default, ‘OpsSchool’ would not have shown up in that search.
To ignore case, use the -i flag:

user@opsschool ~$ grep -i opsschool \#cschat.log
 23:02 < nibalizer> http://www.opsschool.org/en/latest/
 15:33 < edunham> hmm, I wonder what I should use as an example in the OpsSchool writeup on grep...

That’s better.
But what if I can’t remember whether there was a space in ‘ops school’?
I could grep twice, once with the space and once without, but that starts to get ugly very fast.
The correct solution is to describe the pattern I’m trying to match using a regular expression.

There are a variety of regex tutorials available.
The most important thing to remember about regular expressions is that some characters are special, and not taken literally.
The special characters are:

	Characters

	Meaning

	$

	End of a line

	^

	Start of a line

	[]

	Character class

	?

	The preceding item is optional and matched at most once

	*

	Zero or more of the preceding item

	+

	One or more of the preceding item

	{}

	Match some number of the preceding item

	|

	Alternation (true if either of the regexes it separates match)

	.

	Any one character

	\

	Escape (take the following character literally)

Note that there’s almost always more than one way to express a particular pattern.
When you’re developing a regular expression, it can be helpful to test it on simplified input to see what it catches.
To test a regex for various spellings of opsschool, you might put a variety of spellings in a file and then grep it to see which regex catches which spellings.

user@opsschool ~$ cat ops.txt
 OpsSchool
 Ops School
 opsschool
 ops school
 ops School
 ops School
 Ops school
user@opsschool ~$ grep -i "ops *school" ops.txt
user@opsschool ~$ grep "[oO]ps[?][sS]chool" ops.txt

Try it yourself.
Part of developing a regular expression is clarifying your ideas about exactly what pattern you’re looking for.
Will you get any false positives?
For example, the first example above will return true if there are 2 or more spaces between the words of ops school.
It’s up to you to decide whether that behavior is correct.
If your regular expression catches strings that it shouldn’t, be sure to include some of those possible false positives when testing.

Think about which of the regular expressions above you’d prefer.
Which is easier to read?
Which is better at matching your idea of the correct output?

For more information about regular expressions, try man 7 regex, regularexpressions.info [http://www.regular-expressions.info/tutorial.html], and the Advanced Bash Scripting Guide [http://tldp.org/LDP/abs/html/x17046.html] chapter on the subject.

Single vs. Double quotes in the shell

When grepping for bash variables in scripts, you’ll probably want the name of the variable.
However, there might be times when you want its value.
Below is a quick exercise to explore the difference:

user@opsschool ~$ echo "$HOME has my username in it" >> home.txt
user@opsschool ~$ echo '$HOME has a dollar sign in it' >> home.txt
user@opsschool ~$ cat home.txt
 /home/username has my username in it
 $HOME has a dollar sign in it
user@opsschool ~$ grep $HOME home.txt
 /home/username has my username in it
user@opsschool ~$ grep "$HOME" home.txt
 /home/username has my username in it
user@opsschool ~$ grep '$HOME' home.txt
 $HOME has a dollar sign in it
user@opsschool ~$ grep \$HOME home.txt
 $HOME has a dollar sign in it

awk

awk is a very powerful utility that lets you extract and manipulate data from files.

For example, if you had a file students.txt similar to the one above, but with the fields separated by a space:

$ cat students.txt
John Doe 25 john@example.com
Jack Smith 26 jack@example.com
Jane Doe 24 jane@example.com

You can use awk to extract just the student’s first name and email like this:

$ awk '{print $1, $4}' students.txt
John john@example.com
Jack jack@example.com
Jane jane@example.com

By default, awk uses the space character to differentiate between columns.
Using this, $1 and $4 told awk to only show the 1st and 4th columns of the file.

The order in which the columns is specified is important, because awk will print them out to the screen in exactly that order.
So if you wanted to print the email column before the first name, here’s how you would do it:

$ awk '{print $4, $1}' students.txt
john@example.com John
jack@example.com Jack
jane@example.com Jane

You can also specify a custom delimiter for awk and override the default one (the space character) by using the -F option.
Suppose the students.txt instead stored data like this:

$ cat students.txt
John Doe - 25 - john@example.com
Jack Smith - 26 - jack@example.com
Jane Doe - 24 - jane@example.com

Now, if the - character is used as a delimiter, the first column would be the student’s full name:

$ awk -F '-' '{print $1}' students.txt
John Doe
Jack Smith
Jane Doe

Using this same logic, the second column would be the student’s age, and the third their email address.

$ awk -F '-' '{print $1, $3}' students.txt
John Doe john@example.com
Jack Smith jack@example.com
Jane Doe jane@example.com

awk functionality doesn’t stop at printing specific columns out to the screen; you can use it to:

	extract a specific row from the file using the NR command

$ awk 'NR==2' students.txt
Jack Smith - 26 - jack@example.com

Note

The -F option was not used here since rows are being manipulated, and the -F option specifies a delimiter for column manipulation

	extract lines longer than a specific length by using the length($0) command

$ awk 'length($0) > 30' students.txt
John Doe - 25 - john@example.com
Jack Smith - 26 - jack@example.com
Jane Doe - 24 - jane@example.com

$ awk 'length($0) > 32' students.txt
Jack Smith - 26 - jack@example.com

	find the average of numbers in a column

$ awk -F '-' '{sum+=$2} END {print "Average age = ",sum/NR}' students.txt
Average age = 25

In the last example, with the average age, {sum+=$2} tells awk to take each value in the second column and add it to the existing value of the variable sum.
It’s important to note here that the variable sum didn’t have to be declared or initialised anywhere, awk creates it on-the-fly.
The END pattern tells awk what to do after all lines in the file have been processed.
In our case, that involves printing out the average age of all students.
To get the average age, the sum of all ages (stored in variable sum) was divided by the total number of lines in the file, represented by NR.

In addition to the END pattern, awk also provides a BEGIN pattern, which describes an action that needs to be taken before the first line of the file is processed.

For example:

$ awk 'BEGIN {print "This is the second line of the file"} NR==2' students.txt
This is the second line of the file
Jack Smith - 26 - jack@example.com

sed

Todo

Only talk about replacing text for now? It’s the most common / needed piece of sed at this level.

sort

sort can be used to sort lines of text.

For example, if you had a file coffee.txt that listed different types of coffee drinks:

$ cat coffee.txt
Mocha
Cappuccino
Espresso
Americano

Running sort would sort these in alphabetical order:

$ sort coffee.txt
Americano
Cappuccino
Espresso
Mocha

You can also reverse the order by passing in -r to the command:

$ sort -r coffee.txt
Mocha
Espresso
Cappuccino
Americano

All very easy so far.
But, say we have another file orders.txt that is a list of how many of each drink has been bought in a day:

$ cat orders.txt
100 Mocha
25 Cappuccino
63 Espresso
1003 Americano

What happens when we run sort on this file?

$ sort orders.txt
1003 Americano
100 Mocha
25 Cappuccino
63 Espresso

This isn’t what we want at all.
Luckily, sort has some more flags, -n is what we want here:

$ sort -n orders.txt
25 Cappuccino
63 Espresso
100 Mocha
1003 Americano

What if we want to sort the new list by name? We will have to sort by the second column, not the first one. sort assumes that columns are space separated by default. sort has the flag -k that let us specify what key we want to use.

$ sort -k2 orders.txt
1003 Americano
25 Cappuccino
63 Espresso
100 Mocha

There are many more flags available, man sort will show you them all.
There is probably already something there for whatever you can throw at it.

Crontab

Laziness is considered a virtue in system administration, meaning you should
figure out ways to avoid having to perform the same task regularly by hand.
Cron to the rescue!

cron is the time-based job scheduler in Unix-like computer operating
systems. cron enables users to schedule jobs (commands or shell scripts)
to run periodically at certain times or dates. It is commonly used to
automate system maintenance or administration, though its general-purpose
nature means that it can be used for other purposes, such as connecting
to the Internet and downloading email.

—cron - From Wikipedia, the free encyclopedia [http://en.wikipedia.org/wiki/Cron]

cron allows you to run routine jobs on a Unix-based system automatically at
a specific future time or at regular intervals rather than running such jobs
manually. Even knowing just the basics of cron is a huge win, as this tool
increases productivity, saves time and is not prone to human error, i.e.
forgetting to run a job.

What is a “crontab”?

“crontabs” (or cron tables) are the way that a user schedules a job to run
under cron. They’re composed of the following parts:

	cron expression: A string that describes the time or times when the command
should be run

	user (optional): If the crontab is specified in a centralized location
instead of the user’s personal crontab file, this field contains the username
that the command should be run as. This allows cron to run a command as
you, even if you’re not logged in at the time. This field isn’t used in a
user’s personal crontab file.

	command: The rest of the line is interpreted as the command that cron
should run at the specified time.

“crontab” may also refer to a file containing any number of these cron
tables, one per line.

crontab files are commonly found in a couple of different places:

	/etc/cron.d, /etc/cron.daily, /etc/cron.hourly, and so on: System
crontabs, or crontabs installed by a software package

	/var/spool/cron/<username>: Users’ crontabs; these are created
and managed with the crontab command.

The crontab command

How do I list jobs scheduled to run with cron?

The easiest way to see jobs running regularly on the system (aka “cron jobs”)
is to type:

user@opsschool ~$ crontab -l

in the shell. This will show all the cron jobs scheduled to run as the
current user. For example, if you are logged in as jdoe and there
are no cron jobs running the output will be something like:

jdoe@opsschool ~$ crontab: no crontab for jdoe

If there are jobs scheduled to run, there will be a list of lines that looks
something like this:

05 12 * * 0 /home/jdoe /home/jdoe/jobs/copy-to-partition

How do I schedule a job with cron?

The way to schedule a new job is to type:

user@opsschool ~$ crontab -e

in the shell. This will open an editor with your personal “crontab” file (or
an empty file if you don’t have any cron jobs already scheduled).

Then add a line to the file that looks like this:

0 * * * * date

and save and close the file.

The cron job you just created will run the command date at the top of
every hour (e.g. at 10:00, 11:00, 12:00, etc.). Depending on how your system
is configured, it may begin to email you the output of that command each time
it’s run, or it may be saved to a log file somewhere.

A more in-depth example

Let’s look again at the example from before:

05 12 * * 0 /home/jdoe /home/jdoe/jobs/copy-to-partition

Let’s dissect this a bit, as it will help when you’re creating your own cron
jobs. What is this output telling you? It is helpful to know what the fields of
a “crontab” are. Here’s a table with the order of fields, and their values:

	MINUTE

	HOUR

	DAYOFMONTH

	MONTH

	DAYOFWEEK

	COMMAND

	0-59

	0-23

	1-31

	1-12

	0-6

	filepath/command

Note

Order matters, and note that the first element is 0 for the minute, hour,
and day of the week fields, while the day of the month and month
fields begin at 1.

Knowing this, we can see that this “crontab” means:

At 12:05 every Sunday, every month, regardless of the day of the month, run the
command copy-to-partition in the /home/jdoe/jobs directory.

Caveat: entries in your crontab must be one long line; if you try to split it up
(with the linebreak \ character for example) you will get an error!

Let’s take another example and create a cron job that checks disk space
available every minute, every hour, every day of the month, every month, for
every day of the week, and outputs it to a file named :file:disk_space.txt.

* * * * * df -h > disk_space.txt

This would get us what we wanted (df -h is the unix command for checking free
disk space).

Field values can also be ranges. Let’s say you want to edit this job to run the
same command (df -h), but instead of running every minute, you only want the
job to run it in the first 5 minutes of every hour, every day of the month,
every month, for every day of the week.

Running crontab -e again and changing the line to:

0-5 * * * * df -h > disk_space.txt

will get you what you want.

How do I remove a crontab?

Lastly, if you want to remove the command, again type crontab -e, and then
delete the line with that job in it from the file in your editor.

To remove all cron jobs for the current user, type:

crontab -r

What are some common “cron expressions”?

The “cron expression” syntax can be confusing to understand. Here are some
common expressions to get you started.

	* * * * *: every minute

	0 * * * *: every hour, on the hour

	0 0 * * *: every day at midnight server time

	0 0 * * 0: every Sunday at midnight server time

	*/10 * * * *: every ten minutes

	0 */4 * * *: every four hours, on the hour

Advanced “crontab”

How do “cron expressions” work?

Here is the standard “cron expression” cheat sheet 1:

.---------------- minute (0 - 59)
| .------------- hour (0 - 23)
| | .---------- day of month (1 - 31)
| | | .------- month (1 - 12) OR jan,feb,mar,apr ...
| | | | .----- day of week (0 - 7) (Sunday=0 or 7) OR sun,mon,tue,wed,thu,fri,sat
| | | | |
* * * * * command to be executed

Put this template at the top of your crontab file so it’ll be easy to remember
what the fields do.

Notes on composing good “cron expressions”

	If you want to run something every N hours, be sure to specify a minute
expression (the first number) also; otherwise, the command will be run once a
minute for the entire hour.

	Commands run by cron won’t have all of the configuration and environment
variables that come from your shell initialization files (like .bashrc or
.zshrc or such). In particular, make sure to specify the full path to your
program if it’s not in a commonly-used location like /usr/bin.

	If you have problems with the syntax, or something isn’t working properly, there
are websites 2 that will translate crontab to English, and vice versa. 3

Modify a specific user’s crontab

The crontab command can be used to view or modify a specific user’s crontab
file, instead of the current user’s crontab file. For instance, if you
are logged in as jdoe and you want to edit jsmith’s crontab (and you
have the permissions to do so), type the following in a shell:

jdoe@opsschool ~$ crontab -e -u jsmith

This option also combines with the other options we looked at before (-l for
listing and -r for removing a user’s crontab file).

Modifying crontab parameters

With some cron implementations 4, you can add shell environment variables to
the top of a crontab file that affect all of the commands run by those crontabs.
For example, you could modify the PATH, MAILTO, HOME, or any other
variable.

Cron Output

Output from cron commands can be emailed to the owner of the process using a local SMTP server, like ssmtp or postfix.
If you’d like the output to be sent to an email different than your root@yourhost address use the MAILTO="your@email" expression before the cron command.
An email will be sent containing the output from STDOUT/STDERR every time the command executes.
Unfortunately, the email gives no indication of the return status of the process (success or failure) and often leads to a cluttered inbox.

Note

If your crontab is misconfigured you won’t receive an email at all.
Finding such failures (the lack of an email in your inbox) is hard to detect.
To save time and avoid these silent failures, it is better to use a service that will notify you only on cron failures. 5

Footnotes

	1

	“Examples” in cron - Wikipedia, a free encyclopedia [http://en.wikipedia.org/wiki/Cron#Examples_2]

	2

	Crontab to plain English [http://cronchecker.net]

	3

	English to crontab [http://corntab.com/]

	4

	Where can I set environment variables that crontab will use? [http://stackoverflow.com/questions/2229825/where-can-i-set-environment-variables-that-crontab-will-use/10657111#10657111]

	5

	Receive notifications when cron commands fail [https://deadmanssnitch.com/]

Unix fundamentals 201

	Kernel tuning

	Signals
	What Are Signals?

	How Do Signals Work?

	How To Send a Signal to a Program

	List Of Posix 1990 Signals

	Syscalls
	Using strace

	Booting over the network
	TFTP

	PXE

	Basic Setup Process

	iPXE Setup

	PXELINUX setup

	/bin/init and its descendants
	init

	systemd

	upstart

	SMF

	daemontools

	Looking at system metrics
	vmstat

	iostat

	systat

	dstat

	sar

Kernel tuning

An introduction to /proc, sysctl, mdb, ndd

Signals

What Are Signals?

Signals are a form of inter-process communication (IPC) in Posix compliant systems like Linux, UNIX, and UNIX-like operating systems.
They are an asynchronous mechanism the kernel uses to communicate with a process or a thread.
Signals are always delivered by the kernel but can be initiated by the kernel, the process itself, or even another process.
Signals are often referred to by their name, or their numeric integer value.
For example, the kill signal is known as SIGKILL, or 9.
There are many different signals that can be sent, although the signals in which users are generally most interested are SIGTERM and SIGKILL.
The default signal sent is SIGTERM.

How Do Signals Work?

When a process receives a signal, what happens depends on the program.
In the simplest case the process will just apply the default signal handlers defined in the C library.
In most cases this will cause the program to terminate, suspend, and occasionally it will ignore the signal.

In some cases, programs have custom signal handlers.
Programs that have custom signal handlers will behave differently when they receive a signal.
For example many service daemons will reload their configurations when they receive the SIGHUP signal; the default action for SIGHUP is for the program to terminate.

In either case, when the kernel sends a signal to a process, the process will execute its signal handler immediately.
Processes can enter states in which they are executing atomic instructions(like file locks), and will not process the signal until the instruction is completed.

How To Send a Signal to a Program

There are three ways to send a signal to another process.
The simplest way is the execute the “kill” command with a signal specified.
For example you can use the kill command from the shell to send the interrupt signal like so:

kill -SIGINT <PID>

You can write a simple program executing the kill system call.
A basic example is below:

int signal_pid(int pid) {
 int rvalue;
 rvalue = kill(pid, SIGINT);
 return rvalue;
}

Lastly you can send signals from the keyboard in an interactive terminal.
Ctrl-C will send SIGINT, and Ctrl-Z send SIGTSTP.

List Of Posix 1990 Signals

	Signal

	Value

	Action

	Comment

	SIGHUP

	1

	Term

	Hangup detected on controlling terminal or death of controlling process

	SIGINT

	2

	Term

	Interrupt from keyboard

	SIGQUIT

	3

	Core

	Quit from keyboard

	SIGILL

	4

	Core

	Illegal Instruction

	SIGABRT

	6

	Core

	Abort signal from abort(3)

	SIGFPE

	8

	Core

	Floating point exception

	SIGKILL

	9

	Term

	Kill signal

	SIGSEGV

	11

	Core

	Invalid memory reference

	SIGPIPE

	13

	Term

	Broken pipe: write to pipe with no readers

	SIGALRM

	14

	Term

	Timer signal from alarm(2)

	SIGTERM

	15

	Term

	Termination signal (signal sent by default by the kill command when not specified)

	SIGUSR1

	30,10,16

	Term

	User-defined signal 1

	SIGUSR2

	31,12,17

	Term

	User-defined signal 2

	SIGCHLD

	20,17,18

	Ign

	Child stopped or terminated

	SIGCONT

	19,18,25

	Cont

	Continue if stopped

	SIGSTOP

	17,19,23

	Stop

	Stop process

	SIGTSTP

	18,20,24

	Stop

	Stop typed at tty

	SIGTTIN

	21,21,26

	Stop

	tty input for background process

	SIGTTOU

	22,22,27

	Stop

	tty output for background process

Syscalls

What are syscalls?

Applications require actions from the kernel to perform several tasks it cannot handle by itself.
Accessing files, connecting to sockets, creating processes are examples of tasks handled by the kernel.
System calls are the interface for an application to interact with the kernel.

Using strace

The strace tool can be used to monitor interaction between a process and the kernel.
It displays system calls initiated by the process, and signals received by the process.

Consider the simple script:

#!/bin/bash
echo "one line of text" > my_input.txt
while read line
do
 echo $line > my_output.txt
done < my_input.txt
rm my_input.txt

Exec

When invoking this script using strace -omy_strace.log -ff ./strace_sample.sh, the output of every (forked) process is written to my_strace.log.<pid>.
Let’s examine the logfile of our parent process (parts of the output are omitted, let’s focus on the relevant stuff) :

execve("./strace_sample.sh", ["./strace_sample.sh"], [/* 17 vars */]) = 0

execve executes the file “strace_sample.sh” with arguments “./strace_sample.sh” (by convention the first should be the filename to be executed) and 17 environmental variables.
At this point there are already 3 file descriptors open: stdin (fd 0), stdout (fd 1), stderr (fd2).

I/O

open("./strace_sample.sh", O_RDONLY|O_LARGEFILE) = 3
<..>
read(3, "#!/bin/bash\necho \"one line of te"..., 80) = 80
<..>
dup2(3, 255) = 255
close(3) = 0
<..>
read(255, "#!/bin/bash\necho \"one line of te"..., 126) = 126
<..>

open prepares the file for reading in file descriptor 3 (result of the syscall open).
Next, read attempts to read the next 80 bytes from fd (file descriptor) 3.

At this point the interpreter line of the script is read, indicating that the /bin/bash binary needs to be invoked to process the script.
dup2 copies the fd 3 to the (new) fd 255.
This is a bash-specific operation, don’t mind too much; bash keeps the original file in fd 255 (last of the process’ private fd) to free up low-numbered fd’s.

Now that our original file is open in fd 255, fd 3 is not needed anymore and can be closed by close.
At last the next 126 bytes (rest of the file) are read and stored in the buffer, now we can start to process the commands in the script file.

open("my_input.txt", O_WRONLY|O_CREAT|O_TRUNC|O_LARGEFILE, 0666) = 3
<..>
fcntl64(1, F_DUPFD, 10) = 10
<..>
dup2(3, 1) = 1
close(3) = 0
write(1, "one line of text\n", 17) = 17
dup2(10, 1) = 1
<..>
close(10) = 0

Now we’re going to write to a file using redirection.
First, open opens/creates the “my_input.txt” file for writing in fd 3.
Then, fcntl64 uses F_DUPFD (10) command to get the next available fd numbered >=10 and copy fd 1 (initially opened for stdout) to the new fd 10.
This saves the original content of fd 1 (stdout), so it can be restored later.

Next dup2 copies fd 3 to fd 1 so that writing to fd 1 ends up in the file opened by fd 3.
The write call then writes the next 17 bytes from the buffer to fd 1.
Afterwards the redirection is reverted, by copying fd 10 (original value for fd 1) back to fd 1.
Now fd 1 points to stdout as in our initial situation. The fd’s which are not needed any longer are closed.

open("my_input.txt", O_RDONLY|O_LARGEFILE) = 3
<..>
fcntl64(0, F_DUPFD, 10) = 10
<..>
dup2(3, 0) = 0
close(3) = 0
<..>
read(0, "one line of text\n", 128) = 17
open("my_output.txt", O_WRONLY|O_CREAT|O_APPEND|O_LARGEFILE, 0666) = 3
<..>
fcntl64(1, F_DUPFD, 10) = 11
<..>
dup2(3, 1) = 1
close(3) = 0
write(1, "one line of text\n", 17) = 17
dup2(11, 1) = 1
<..>
close(11) = 0
read(0, "", 128) = 0
dup2(10, 0) = 0
<..>
close(10)

This time we’ll both read and write using redirection.

Again, open prepares “my_input.txt” for reading in fd 3.
This time, save fd 0 (by default stdin) to fd 10.
dup2 copies fd 3 to fd 0 (redirecting “my_input.txt” to stdin) and close fd 3.
Next, read the next 128 bytes from fd 0 (“my_input.txt”) and save to the buffer.

Then, “my_output.txt” is opened (created) for writing in fd 3.
Now fcntl64 uses F_DUPFD (10) to get the next available fd >= 10 (which at this point is 11 as fd 10 is already open) and copy fd 1 to it.
The fd 3 is copied to fd 1 using dup2.

Finally, write 17 bytes from the buffer to fd 1, which at this moment points to “my_output.txt”.
The redirection is reverted by copying fd 11 to fd 1 with dup2, and fd 11 can be closed.

A next attempt to read from fd 0 results in 0 bytes read, indicating the end of file is reached.
The redirection is reverted by copying fd 10 to fd 0 and closing fd 10.

exec, open, close, read and write are handled. Let’s look at creating child processes and removing files.

Child processes

clone(child_stack=0, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD, child_tidptr=0xb6f50068) = 3482

The parent process uses clone to create a child process to execute the rm command.
The logging of this child process is logged in the second my_strace.log.<pid> file, where in this example pid=3482, but this varies on each run.

execve("/bin/rm", ["rm", "my_input.txt"], [/* 17 vars */]) = 0
<..>

Unlink

newfstatat(AT_FDCWD, "my_input.txt", {st_mode=S_IFREG|0644, st_size=17, ...}, AT_SYMLINK_NOFOLLOW) = 0
faccessat(AT_FDCWD, "my_input.txt", W_OK) = 0
unlinkat(AT_FDCWD, "my_input.txt", 0) = 0
close(0) = 0
close(1) = 0
close(2) = 0
exit_group(0) = ?

The rm command is executed using execve, with arguments “rm” (as per convention this is the filename to be executed) and “my_input.txt”.
newfstatat gets the file status and faccessat check the file permissions of the file.

Finally, unlinkat removes the file’s name from the filesystem.
If that name was the last link to a file and no processes have the file open, the file is deleted and the space it was using is made available for reuse.
As a last step for this process the 3 standard fd’s are closed, and exit_group exits all possible threads in the process.

Again in the parent’s logfile, the interaction with the child process is logged.

wait4(-1, [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 3481
<..>
--- SIGCHLD (Child exited) @ 0 (0) ---
wait4(-1, 0xbec6bf39, WNOHANG, NULL) = -1 ECHILD (No child processes)
<..>
read(255, "", 142) = 0
exit_group(0) = ?

wait4 keeps the parent process waiting for the child process to terminate.
Once terminated, wait releases and the parent process continues.
A final read is attempted on fd 255, but as the end of the file is reached, this returns 0.
The last exit_group exits all open threads in the process.

Output tuning

By default the strace produces all system calls performed by the executable.
As this can be overwhelming, the -e switch can be used to look for specific system calls.
When examining this with -eopen the following is output is given:

strace -eopen ls
open("/etc/ld.so.cache", O_RDONLY) = 3
open("/lib64/librt.so.1", O_RDONLY) = 3
open("/lib64/libacl.so.1", O_RDONLY) = 3
open("/lib64/libselinux.so.1", O_RDONLY) = 3
open("/lib64/libc.so.6", O_RDONLY) = 3
open("/lib64/libpthread.so.0", O_RDONLY) = 3
open("/lib64/libattr.so.1", O_RDONLY) = 3
open("/lib64/libdl.so.2", O_RDONLY) = 3
open("/lib64/libsepol.so.1", O_RDONLY) = 3
open("/etc/selinux/config", O_RDONLY) = 3
open("/proc/mounts", O_RDONLY) = 3
open(".", O_RDONLY|O_NONBLOCK|O_DIRECTORY) = 3

This can come in handy to troubleshoot specific system calls.
A list of available syscalls can be seen in man syscalls.
For more details on a syscall, look it up in the man page.
Some syscalls have several variant and might be referenced in strace output with different names; try to look them up without certain prefixes to find the relevant man pages.
For performance measuring the -T and -c flags are usefull:

	-T Show the time spent in system calls. This records the time difference between the beginning and the end of each system call.

	-c Count time, calls, and errors for each system call and report a summary on program exit.

Booting over the network

Typically, a machine will boot off of some type of local device.
However, there are some cases where it makes more sense to boot a machine off a remote host.
For example:

	You have a large number of machines to install, and carrying a CD/USB drive to each of them is time consuming.

	You have a machine where the hard drive is failing, and you need to run some diagnostic tools

	You have a machine in a remote location, but you need to reinstall the operating system

In situations like this, it’s possible to boot a machine entirely over the network.
This relies on a little piece of firmware built into pretty much every modern NIC.
This software is called Preboot eXecution Environment (PXE).

The network boot process works like this:

	The machine boots off the NIC, which has PXE firmware built in

	The PXE firmware initializes the NIC and sends out a DHCP request

	The DHCP response contains instructions to contact another server and download a file

	The PXE firmware downloads the file via TFTP, and begins executing it

	From here, many different things can happen depending on the type of software downloaded

TFTP

Trivial File Transfer Protocol (TFTP) is a very basic file transfer protocol that’s used for bootstrapping the PXE firmware into something more useful.
TFTP is implemented as a UDP service, typically running on port 69.
TFTP does not support any type of authentication.

Given the low complexity of the TFTP protocol, servers are available for virtually every operating system.
Configuration is typically just pointing the server at a directory full of files to serve up.
Unless you have very specific reasons to do so (and fully understand the implications), you should make sure that your TFTP server is setup in read only mode.

PXE

The PXE stack by itself is very limited.
It’s designed to just be able to retrieve and execute a file, and by itself is not terribly useful.
The two most popular software packages used with PXE are iPXE 1 and PXELINUX 2.
Of these, PXELINUX is the older one, and is a variant of SysLinux.
SysLinux is most commonly used as the initial menu you see when you boot a Linux CD.
iPXE is newer, and supports booting over many different protocols (HTTP, iSCSI, various SAN types, among others).

Basic Setup Process

For both iPXE and SysLinux you will need both a DHCP and TFTP server installed. Your operating system will likely have a tftp server package available.
Don’t worry too much about the exact one you use, there are only minor differences between them.
After this is installed, you will need to locate the directory that it is serving files from.
For the rest of this document we will refer to this directory as the ‘tftpboot’ directory.

For the DHCP server, we’ll be using the ISC DHCPD server.
This is available for many platforms, and has a large amount of documentation available.
Aside from setting up a DHCP range, you’d need to add the following line to your dhcpd.conf file:

Any clients that are PXE booting should attempt to retrieve files from this server
next-server <tftp server IP>;

That is the bare minimum needed for both types of PXE software we’re going to set up.

iPXE Setup

Start by downloading iPXE 3.
Make sure you save this to your tftpboot directory.
Next, add the following to your dhcpd.conf file:

if exists user-class and option user-class = "iPXE" {
 filename "chainconfig.ipxe";
} else {
 filename "undionly.kpxe";
}

This will cause the DHCP server to first tell clients to download iPXE.
Once iPXE starts up and does another DHCP request, it will be told the actual location of the configuration file to download.
Without this, we would end up with a continuous loop of iPXE downloading itself.
Create a chainconfig.ipxe file in your tftpboot directory with the following:

#!ipxe

:start
Define a generic title for the menu
menu iPXE boot menu
And now we define some options for our menu
item localboot Boot from local disk
item centos6_x64 Install CentOS 6 x64
item centos6_i386 Install CentOS 6 i386

Now we prompt the user to choose what they want to do. If they don't select an option
within 60s we default to booting from the local disk. If they somehow choose an invalid
option, we drop them to the iPXE shell for further debugging
choose --default localboot 60000 bootoption && goto ${bootoption} ||
echo Invalid option selected!
shell

Here we define our two network installation options. iPXE supports basic variable operations,
so we can reuse much the same code for booting the two different architectures. We'll define
some options specifying the version and architecture we want, then jump to some common installer
code
:centos6_x64
set centos-version 6
set arch x86_64
goto centos_installer

:centos6_i386
set centos-version 6
set arch i386
goto centos_installer

This demonstrates some of the power of iPXE. We make use of variables to prevent config duplication
and we load the installer files directly off the CentOS mirror. There's no need to copy everything
to a local TFTP server. We also fallback to a shell if the boot fails so any issues can be debugged
:centos_installer
kernel http://mirror.centos.org/centos-${centos-version}/${centos-version}/os/${arch}/images/pxeboot/vmlinuz ramdisk_size=65535 noipv6 network
initrd http://mirror.centos.org/centos-${centos-version}/${centos-version}/os/${arch}/images/pxeboot/initrd.img
boot ||
goto shell

This just exits iPXE entirely, and allows the rest of the boot process to proceed
:localboot
exit

PXELINUX setup

Start by downloading SysLinux 4.
Copy a few files from the archive into your tftpboot directory:

	com32/menu/vesamenu.c32

	core/pxelinux.0

Next, we’ll need to create the menu config file.
Create the file tftpboot/pxelinux.cfg/default:

We want to load the vesamenu module, which generates GUI menus
UI vesamenu.c32
Don't display a prompt for the user to type in a boot option (they'll be selecting one instead)
PROMPT 0
Our default option is to boot from the local drive
DEFAULT localboot
Wait 60s before booting to the default option
TIMEOUT 600

Define a title for our menu
MENU TITLE SysLinux Boot Menu

This is the internal name for this option.
LABEL centos6_x64
 # And a human readable description
 MENU LABEL Install CentOS 6 x64
 # This is the kernel file to download (via TFTP) and boot
 KERNEL centos/6/x64/vmlinuz
 # And any command line options to pass to the kernel
 APPEND initrd=centos/6/x64/initrd.img ramdisk_size=65535 noipv6 network

Now for the i386 version. As SysLinux doesn't support variables, we end up duplicating
the majority of the config from the x64 version
LABEL centos6_i386
 MENU LABEL Install CentOS 6 i386
 KERNEL centos/6/i386/vmlinuz
 APPEND initrd=centos/6/i386/initrd.img ramdisk_size=65535 noipv6 network

LABEL localboot
 # Proceed through the rest of the normal boot process
 LOCALBOOT 0

Since PXELINUX doesn’t support HTTP, we’ll need to download the CentOS installer images to the tftpboot directory.
Create two directories and download the initrd.img and vmlinuz files to them:

	Directory: tftpboot/centos/6/x64/ Files: http://mirror.centos.org/centos-/6/os/x86_64/images/pxeboot/

	Directory: tftpboot/centos/6/i386/ Files: http://mirror.centos.org/centos-6/6/os/i386/images/pxeboot/

References

	1

	http://ipxe.org

	2

	http://www.syslinux.org/wiki/index.php/PXELINUX

	3

	http://boot.ipxe.org/undionly.kpxe

	4

	https://www.kernel.org/pub/linux/utils/boot/syslinux/

/bin/init and its descendants

init

systemd

upstart

Upstart is a project that aims to replace to old init system by providing one
standard way of starting and stopping daemons with the correct environment.
A second goal is to speed up a computer’s boot time. It achieves this by
removing the slow init shell scripts, and also by parallelizing as much of the
startup as possible. Where old init daemons start daemons in successive order,
upstart issues “events” on which “jobs” can listen.

Such an event can be e.g.: filesystem - indicates that the system has mounted
all its filesystems and we can proceed to start any jobs that would depend
on a filesystem. Each job then becomes an event of its own, upon which others
can depend. These events can be broken up into stages: starting(7), and
started(7); and stopping(7), and stopped(7) respectively.

A good starting point for learning how different jobs on a system are interconnected
is initctl(8)’s show-config command:

igalic@tynix ~ % initctl show-config
avahi-daemon
 start on (filesystem and started dbus)
 stop on stopping dbus
cgroup-lite
 start on mounted MOUNTPOINT=/sys
elasticsearch
 start on (filesystem or runlevel [2345])
 stop on runlevel [!2345]
mountall-net
 start on net-device-up
...

This snippet reveals that upstart will stop the avahi-daemon at the same
time as dbus. Unlike many other daemons that depend on the whole filesystem, upstart
will start cgroup-lite as soon as the /sys filesystem is mounted.

Upstart is also able to “supervise” programs: that is, to restart a program
after it crashed, or was killed. To achieve this, upstart needs to “follow” a
programs progression. It uses the ptrace(2) system call to do so. However,
following a daemons forks is complex, because not all daemons are written alike.
The upstart documentation recommends to avoid
this whenever possible and force a to remain in the foreground. That
makes upstart’s job a lot easier.

Finally, upstart can also switch to a predefined user (and group) before
starting the program. Unlike systemd and SMF, however, it cannot drop to a
limited set of capabilities(7) before doing so.

Putting it all together in an example:

httpd-examplecom - Apache HTTP Server for example.com
#

description "Apache HTTP Server for example.com"

start on filesystems
stop on runlevel [06]

respawn
respawn limit 5 30

setuid examplecom
setgid examplecom
console log

script
 exec /opt/httpd/bin/httpd -f /etc/httpds/example.com/httpd.conf -DNO_DETACH -k start
end script

In this example we define an upstart job for serving example.com from
the Apache HTTP Server. We switch to the user/group examplecom and start
httpd in the foreground, by passing the option -DNO_DETACH.

To activate this job, we simply place it in a file in /etc/init/, e.g.
/etc/init/httpd-examplecom.conf. We can then start/stop the job by issuing:

% sudo start httpd-examplecom

Note that this job definition alone already will guarantee that the system will
start the job on reboot. If this is not what we want, we can add the stanza
manual to the job definition.

SMF

daemontools

Looking at system metrics

vmstat

iostat

systat

dstat

sar

MS Windows fundamentals 101

Text Editing 101

As a sysadmin, and especially as a Linux/Unix sysadmin, you’re going to have to get used to
not only making your way around the command line, but also editing text files.
Both of these tasks require you to get familiarized and comfortable with the two most common
text editors in this space: vi and emacs

Both of these editors, vi and emacs, are command-line utilities that you run from a
terminal window. This means that you can also run them on remote machines over an ssh connection.
While there are graphical versions of these tools available (gvim and xemacs), many
administrators prefer the text-only versions, as it creates a uniform experience whether they
are working on their own local machine, or a remote one being accessed over the network.
Additionally, avoiding use of the mouse means your hands stay on the home row of the keyboard,
meaning you work faster and with less fatigue.

A little history

Back when UNIX was just starting to appear on computers that had actual input/output systems
(e.g. teletype), interaction with the computer was strictly a text-based affair. The computer
would send some data in the form of ASCII [http://en.wikipedia.org/wiki/ASCII/]* characters over a slow
telephone link. The user would then hit some keys on the keyboard, which would send back more
ASCII characters to the computer, again over the slow telephone link.

Because communication was so slow, UNIX programmers and users wrote their internal tools to
be as efficient as possible. Early editors, such as ed, would only let you see one
line of text in the file at a time, since the commonly used interface at the time, a teletype,
printed on paper and thus there was no concept of “redrawing” or even of a “screen”. These
early tools later evolved into the more advanced editors like vi and emacs in use
today. But these tools retain their UNIX heritage of lean efficiency. Commands are sent
usually in single characters, there’s no “toolbar”, and the editor provides powerful tools
to quickly shuttle the cursor around the file quickly, without having to display unrelated
text/context in the file.

* Note: you can also run man ascii to quickly get an ASCII table

vi basics

vi was created as an extension to ex (a successor to ed). When
“modern” terminals (e.g. electronic displays, not teletypes) became common, it
made sense to use a “visual” editing mode, where you could see the context of
the line you were editing. From ed, you would enter “visual” mode by
running :vi – thus VI was born.

Since then, vi has been written and re-written many, many times. But inside, you
will still find good ol’ ed. In Text Editing 201, you will see how you can
still access the very powerful ed features by using the colon (:) command.

There are many versions of vi out there, but the most popular is vim (VI iMproved).
Virtually every Linux distribution out there provides vim either by default, or
as an easily installable package. vim extends the feature set provided by the
POSIX-compliant vi utility in many ways. In the examples below, features that
are only present in vim will be noted.

A Note About Vimtutor

Vim, the modern, extended version of vi, includes a tutorial of its own. On
a system with Vim installed, you should be able to run vimtutor to get an interactive
session that walks you through most of the same content you’ll get on this page. You
don’t have to use vimtutor if you don’t want to, though – just know that it is
there if you wish to try it out.

vi Modes

The first thing to understand about how vi works is that it operates in
different modes.

Normal mode is vi’s default mode and should be the mode you are in most
of the time. When in normal mode, the keys you type are interpreted by vi
as commands, not as text you wish to put into the file. For example, moving
the cursor around the screen is a series of commands, as is deleting text.

Insert mode is when you are actually typing in text. The keys you type
while in insert mode are simply dumped into the buffer (vi’s name for the
file you are editing). You exit insert mode by pressing the Esc key.

Command-line mode is when you are typing a command on the cmd line at the
bottom of the window. This is for the Ex commands, “:”, the pattern search
commands, “?” and “/”, and the filter command, “!”.

Hello, world!

Before learning anything else, you’ll need to know how to do two basic operations,
which are best described by working through these steps.

Start vi and edit a new file:

vi helloworld.txt

The editor will start up in normal mode. The first thing we want to do is add
some text to the file. Press i to enter “insert” mode. You will notice
that the editor begins to let you start typing text into the file. Enter
some text into the file:

Hello, World!

Now you want to save the contents, so follow these steps:

	Press Esc to exit insert mode and enter command mode

	Press : and then w, then Enter. This will write out to the file.

	The editor remains in command mode, waiting for your next command.

Now you want to exit the editor:

	Press Esc to exit insert mode (hitting Esc while in command mode does nothing, so it’s safe to just hit it for good measure)

	Press : and then q (quit), then Enter. You will exit vi.

Cursor motion

Now that you know how to open a file, put some text into it, and then exit the editor. The next most important thing to learn
is how to move around in the file. While using the arrow keys might work, it’s far from optimal, and may not be implemented in
strictly POSIX-compliant versions of vi.

When in normal mode, you use the h, j, k, and l (ell) keys to move the cursor around:

	h - left

	j - down

	k - up

	l - right

Seems confusing and awkward at first, right? It’s actually not. You will quickly learn the motions without
having to think about it, and you will be able to move around very fast in the file, without ever having
to move your hands from the home row of the keyboard.

In addition to the simple cursor motion commands, there are a few other cursor motion commands that are
extremely helpful to know:

	w - move forward one word

	b - move back one word

	0 - move to the beginning of the line

	^ - move to the first non-blank character of the line

	$ - move to the end of the line

	/some text - search forward to the next match of some text, and place the cursor there

	?some text - search backward to the previous instance of some text, and place the cursor there

	n - repeat the most recent search

	N - repeat the most recent search, but in the opposite direction

	gg - Go directly to the top of the file

	G - Go directly to the bottom of the file

	numberG - Go directly to line number (example: 20G goes to line 20)

Text insertion commands

vi gives you several options for how you actually want to insert text when you enter insert mode.

	i - insert text at the position of the cursor. The first character you type will appear to the left of where the cursor is

	a - append text at the position of the cursor. The first character you type will appear to the right of where the cursor is

	I - Same as insert, but first moves the cursor to the beginning of the line (equivalent to ^i.

	A - Same as append, but first moves the cursor to the end of the line (equivalent to $a.

	o - Open a new line under the cursor and begin inserting text there

	O - Open a new line above the cursor and begin inserting text there

Text removal commands

You will notice that while in insert mode, you can use the backspace and delete keys as expected. This
makes insert mode easiy to use, but it’s not particularly efficient if you’re trying to eliminate a whole paragraph or something
from your document. When in normal mode, you can issue some commands that remove whole chunks of text:

	x - Delete the character under the cursor

	dw - Delete from the character under the cursor to the beginning of the next word

	dd - Delete the line under the cursor

	NUMdd - Delete NUM lines of text, ex: 10dd deletes 10 lines

	dgg - Delete the current line, and everything else to the top of the file

	dG - Delete the current line, and everything else to the bottom of the file

Undo and Redo

Now that you know how to add and remove text, you’ll inevitably end up making a mistake.
Luckily, vi lets you undo the last command or insertion, by going back to normal mode and hitting
the u key.

In vim (but not strict POSIX vi), you can also press Ctrl-R to redo the last thing
you un-did.

Professional Fonts (vim?)

Syntax Highlighting (vim)

Directory navigation (NERDtree)

Edit/Open/Close Files

Edit/Open/Close Buffers (vim)

Text Editing 201

Vim

[What is Vim, compared to Vi?]

Window Splitting

Plugins

Emacs

[Intro to emacs, what it is, how it’s different to Vi]

Vi was first developed on computers where the keyboards looked like this:

https://en.wikipedia.org/wiki/Vi#/media/File:KB_Terminal_ADM3A.svg

Emacs was first developed on computers where the keyboards looked like this:

https://en.wikipedia.org/wiki/Symbolics#/media/File:Symbolics-keyboard.jpg

The important thing to note in the Symbolics keyboard above is the keys on the bottom row:

[HYPER] [SUPER] [META] [CTRL] [SPACE] [CTRL] [META] [SUPER] [HYPER]

Where Vi has modes for different editing tasks with composable commands, Emacs relies on key combinations or “chords”, particularly the CTRL and META keys, abbreviated C and M.
The convention for canonically specifying a keyboard combination in Emacs is based on those abbreviations using a connecting dash for keys pressed simultanously and a space for follow-up key “arguments”.
For example, the most important key combination in Emacs is this one: C-h ? meaning, press and hold Ctrl then press h, release and press ?. This takes you to Emacs’ “help” options.

Modern keyboards lack a META key, but Emacs has long recognized Alt as META.
For example, the second most important key combination in Emacs is M-x, meaning press and hold Alt and then press x.
This brings up what amounts to Emacs’ “command line” where you can enter any Emacs command to run.

It bears mentioning the “zeroth” most important key command: C-g meaning press and hold Ctrl and press g.
This tells Emacs to cancel whatever it’s doing.
It almost always works, although sometimes after a short wait.
C-g combines with every partial keyboard combination to cancel it.

What Emacs lacks in command composability, it makes up for in programmability.
Nearly every aspect of the editing experience is modifiable using Emacs’ native language, Emacs Lisp.
You can use M-: to open another Emacs’ command-line, this one takes any Emacs Lisp expression and evaluates it.
You can also go to the “scratch” buffer, enter an Emacs lisp expression and press C-x C-e to evaluate it.

You can read Emacs’ online manuals at C-h i.
Going through the Emacs tutorial—C-h t—is highly recommended.

To close Emacs C-x C-c.

Edit/Open/Close Files

	C-x C-f find-file open a file in a buffer to edit

	C-x C-r find-file-read-only

	C-x k kill-buffer close a buffer

	C-x C-f /sudo:localhost:/etc/hosts use Tramp-mode to edit a privileged file (of course, you must be privileged)

Edit/Open/Close Buffers

	C-x b switch-to-buffer switch to another open buffer

	M-x ibuffer see a list of open buffers, to navigate or run other commands on

Directory Navigation

	C-x d see directory contents as a simple list

	C-x D use Dired to operate on a directory’s contents

Syntax Highlighting

Emacs autodetects the kind of file one is operating on and applies syntax highlighting as part of the “mode” used for that buffer.
Emacs comes with built-in modes for almost everything.
You can explicitly run any mode with M-x.

Line numbers

Emacs typically shows the cursor’s position in a buffer on the “mode-line” near the bottom of the screen.
You can configure it to show the position in a “row and column” format running M-x line-number-mode (usually on by default) and M-x column-number-mode.
To see line numbers in buffer use linum-mode.
To highlight the current line use hl-line-mode.

Window Splitting

	C-x 2 split-window-below splits the window horizonally (especially useful for looking at two widely separated parts of the same buffer).

	C-x 3 split-window-right splits the window vertically

	C-x o other-window switches focus to other window

	C-x 0 delete-window closes this window

	C-x 1 delete-other-windows closes the other window

	C-x 4 f find-file-other-window opens file in other window

	C-x 4 r find-file-read-only-other-window

	C-x 4 b switch-to-buffer-other-window

Buffers

M-x ibuffer

References

	https://www.gnu.org/software/emacs/manual/ (the web version of C-h i)

	https://www.emacswiki.org

	http://planet.emacsen.org

	http://hyperpolyglot.org/text-mode-editors

Tools for productivity

The work of operations is often helped by using a combination of tools. The
tools you choose to use will depend heavily on your environment and work style.
Over time you may even change the tools you use.

This is a list of commonly used tools, we recommend trying as many of them as
you have time for. Finding the right tool is often like finding a good pair of
gloves - they have to fit just right!

Terminal emulators

OSX: iTerm2

Rather than stick with the default terminal, many sysadmins on OS X install
iTerm2 [http://iterm2.com/]. iTerm2’s greater flexibility and larger feature set have made it
a de facto standard among technical Mac users. Like most modern
terminals, it supports vertical and horizontal splits, tabs, profiles,
etc. In addition, it stores the rendered buffer for a period of time
which serves as a way to view previous things that might have been lost
due to editor crashes or the like.

Linux: Gnome Terminator

Many advanced Linux sysadmins prefer tiling window managers such as i3 [http://i3wm.org/],
Awesome [http://awesome.naquadah.org/], xmonad [http://xmonad.org/], herbstluftwm [http://herbstluftwm.org/], and others. However, these window managers
can be daunting to a new user when compared to a more Windows-like desktop
environment like Unity [https://unity.ubuntu.com/], KDE [http://www.kde.org/], or XFCE [http://www.xfce.org/]. A popular compromise is to use a
tiling terminal emulator, such as Terminator [http://gnometerminator.blogspot.com/p/introduction.html], within a regular window
manager.

Terminator [http://gnometerminator.blogspot.com/p/introduction.html] has some features which are convenient for performing similar
commands in several places at once, such as grouping terminals together and
then broadcasting your keystrokes to all terminals in the group.

SSH

Common: ssh

If your operating system has a good terminal emulator available (e.g., Linux, BSD,
OSX), then the ssh command line utility is by far the best tool to use for
SSH interactions.

Windows: PuTTY

If you use Windows as your primary work space, PuTTY is possibly one of the best
SSH clients available.

Android: Connectbot

Connectbot is a free app available in the Google Play store, and offers most of
the functionality you would need from an SSH client.

iOS: iSSH

A universal app available on the App Store, iSSH supports most–if not all–of
the features a demanding power user needs.

SSH Use Cases

Far more than just a secure way to access a shell on a remote machine, ssh has
evolved to support a large collection of ways to encapsulate traffic over the
encrypted channel. Each of these is useful in different situations. This
section will present some common problems, and will present how to solve the
problems with ssh. It is important to note that all port forwarding and
proxying occurs over the secure ssh channel. Besides working around firewall
rules, the tunnels also provided a layer of security where there may not
otherwise be one.

Single port on foreign machine firewalled

For this usecase, consider a loadbalancer–lb-foo-1–with a Web management
interface listening on port 9090. This interface is only routable to a LAN
private to the datacenter–10.10.10.0/24. Its IP address is 10.10.10.20. There
is a machine on the 10.10.10.0/24 network with ssh access–jumphost-foo-1,
accessible via DNS with the LAN IP 10.10.10.19. Therefore, one way to
access lb-foo-1 is via bouncing through jumphost-foo-1. OpenSSH
supplies the -L option to bind a local port to a port opened on the
other side of the tunnel. On the remote end, ssh opens a connection to
the host and port specified to the -L option. An example for this
usecase:

ssh -L 9090:lb-foo-1:9090 jumphost-foo-1

This will open a connection from jumphost-foo-1 to lb-foo-1 on
port 9090, and will bind the local port 9090 to a tunnel through the
connection to that port. All traffic sent to the local port 9090 will
reach lb-foo-1:9090. It is important to note that the host given to
-L uses the perspective of the machine ssh connects to directly.
This is important to remember for environments using hosts files or
private / split-horizon DNS. In this usecase, an invocation like the
following would work as well:

ssh -L 9090:10.10.10.20:9090 jumphost-foo-1

In this case, jumphost-foo-1 would try to connect to 10.10.10.20
directly, skipping the DNS lookup.

Tunnel all traffic through remote machine

For this usecase, consider the rest of the machines in the 10.10.10.0/24
network. There are many ways to access them, including VPNs of various
sorts. In addition to creating tunnels to specific ports, OpenSSH can
also create a SOCKS proxy. OpenSSH provides the -D option for this.
As an example, to bounce from jumphost-1 to the rest of the network:

ssh -D 9999 jumphost-foo-1

Once the SOCKS proxy is in place, the operating system or applications
needing access to the proxy need to be configured to use it. This will
vary per-application. Some operating systems (OS X) provide system-wide
proxy configuration.

Reverse Tunneling

In some situations it may be necessary to forward ports from the remote
machine to the local one. While not as common as other port forwarding
techniques, it is often the only option available in the situations
where it sees use. For this feature, OpenSSH listens to a port on the
remote machine and sends the traffic to the local host and port. The
syntax for the -R option is the same as for the -L option
described above. As an example, to have OpenSSH tunnel the remote port
9090 to the local port 8000 on host workstation:

ssh -R 9090:workstation:8000 jumphost-foo-1

Then, programs on jumphost-foo-1–or that can access its port
9090–will be able to access the local port 8000 on workstation.

Tunneling stdin and stdout

This method makes using a jumphost transparent. The idea is to tunnel
not a single port, but the entire connection over the ssh channel. This
usage is typically a matter of configuration in the ssh_config file,
taking advantage of its wildcard-capable Host directive:

Host *.lan
ProxyCommand ssh -W %h:22 jumphost-foo-1

This configuration uses the ProxyCommand feature to cooperate with the
-W flag. Hostnames are resolved from the perspective of the
jumphost. In this example, the machines use an internal pseudo-top level
domain of .lan. To reach, e.g., www-1.lan:

ssh www-1.lan

Before doing DNS resolution, OpenSSH will look in its ssh_config
file for Host entries. Therefore, internal DNS on the foreign end is
sufficient.

Multiplexers

Operations work regularly involves connecting to remote servers (there will be
times when you do nothing but work on remote servers - parts of this curriculum
were even typed on remote servers rather than contributors desktops and
laptops!).

There are however two limitations to working this way:

	You’ll often need to be connected to more than one remote system at a time.
Opening a whole new terminal each time can result in a lot of windows cluttering
up precious screen space.

	What happens if your internet connection stops working? All of your
connections are reset. Any work you might have been doing on the remote servers
can be lost.

Multiplexers are a good solution to this.
They allow you to run multiple “virtual” windows inside a single windows.
For example:

Bob works on 10 remote servers, all of which run Linux.
Bob’s internet connection at work is questionable.
To work around this, Bob connects to server1 which is at his data centre.
It is a reliable server which is close to the other servers Bob works on.
On server1, Bob starts a multiplexer. The multiplexer gives Bob a regular
looking command prompt, and Bob continues his work.

If Bob’s internet connection drops, he can reconnect to server1, and then
re-attach to the multiplexer he started previously. His session is in the
same state he left it before being disconnected, and he can continue his
work.

The multiplexer also lets Bob open more than one command prompt and switch
between them as he needs to. Bob can now connect to many servers and see them
all in one window.

GNU Screen

screen is one of the longest lived multiplexers. Almost everyone who has
used a multiplexer has used screen, and you can’t go far wrong with it.

screen is a full-screen window manager that multiplexes a physical terminal
between several processes (typically interactive shells). It is useful for
creating sessions that can be disconnected from and reconnected to later. This
is useful for running tasks that can take a long time that you do not want to
have an ssh session timeout on, such as a large database import. In these cases
cron is also a very good way to run one off long running tasks.

screen is also very useful for creating sessions that users can share.

Installation

Debian and descendants (Ubuntu, Mint, Suse, etc):

apt-get install screen

On RedHat-style distributions install with the command:

yum install screen

Basic usage

Create a session:

screen -S session1

To detach from a session - in the session type Ctrl+a+d

List available screen sessions:

screen -ls

[gary@mc9 ~]# screen -ls
There are screens on:
 21707.session2 (Detached)
 21692.session1 (Detached)
 21936.session3 (Attached)
3 Sockets in /var/run/screen/S-gary.
[gary@mc9 ~]#

Here we can see 3 screen sessions are running, 2 detached and 1 attached.

Reattach to a session:

screen -r session1

Share a session:

User Alice starts session:

screen -S session1

User Bob can then attach to the same session (both Alice and Bob can send commands to the session):

sudo screen -x alice/session1

Non root users, must use sudo to attach to another user’s session.

Create a session with a log:

screen -L -S session1

screen will output the session log to the user’s home directory with the
file ~/screenlog.0 (0 being the session id). PuTTY is also as a very useful
and featureful ssh client that can be used for logging ssh sessions locally
(Windows and Linux). screen can be used within a PuTTY session.

Create a session with a log and 20000 lines of scrollback in the terminal:

screen -h 20000 -L -S session1

Configuration

screen has a fairly extensive set of configuration options, when screen is invoked, it executes initialization commands from the files /etc/screenrc and .screenrc in the user’s home directory.

Further info

man screen

There is a nifty cheat sheet for the most important screen and tmux keybindings (see below in tmux references 3).

Tmux

tmux 1 is relatively new compared to
screen. It covers the same basic feature set and has added a few
more advanced features. It is recommended you get comfortable with
screen first before attempting to use tmux.

In this chapter you will learn to start a tmux session, get to know a
few first keyboard shortcuts and detach from and re-attach to the
session.

Installation

tmux is available on Debian and its descendants like Ubuntu or Mint
with the command:

apt-get install tmux

On RedHat-style distributions you will have to use the EPEL repository to
get a pre-built package, and install with the command:

yum install tmux

On MacOS you can use Homebrew to install via:

brew install tmux

tmux basics

tmux is usually started with the command tmux in a
terminal window. Depending of your version of tmux you will see either
a line at the bottom of the screen or nothing at all. tmux is
controlled with keyboard shortcuts, the default shortcut usually is
ctrl-b. If you press ctrl-b and then a t in the newly
started tmux window you should see the local time displayed as a large
digital clock. If you hit ctrl-b and c you should see a new
empty window with an empty input prompt.

If you want to detach from the session you have to hit ctrl-b and
d. The tmux window will disappear and you will see a message
[detached] in your terminal window. All the shells and processes
you started onside the tmux session continue to run, you can see
this with a simple

ps -ef | grep tmux

You should see something like the following:

cdrexler 13751 1 0 Nov30 ? 00:00:41 tmux

You will notice that the tmux process has a parent process id of 1
which means that it is not a child process of the shell you started it
in anymore. Accordingly you can leave your working shell, start a new
one and attach to the running tmux process again which is very handy
if your connectivity is flaky or you have to work from different
locations. If you check the process table for the process id of the
tmux process

ps -ef | grep 13751

you will find that is the parent process of the two shells you created
in the beginning of the chapter:

cdrexler 4525 13751 0 17:54 pts/2 00:00:00 -zsh
cdrexler 4533 13751 0 17:54 pts/5 00:00:00 -zsh

If you want to get an overview of the running tmux processes on your
system you can use the command

tmux ls

It will list all available tmux sessions on your system 2. If there
is only one you can attach to it with the command:

tmux att

If there is more than one session the output of tmux ls will look like this:

0: 3 windows (created Fri Nov 30 18:32:37 2012) [80x38]
4: 1 windows (created Sun Dec 2 17:44:15 2012) [150x39] (attached)

You will then have to select the right session with the -t command line switch:

tmux att -t 4

tmux runs as a server process that can handle several sessions so
you should only see one tmux process per user per system.

You should see the original session with the two shells again after
running this command.

tmux configuration

tmux is configured via a
config file which is usually called .tmux.conf that should live in
your $HOME directory.

A typical .tmux.conf looks like this:

#set keyboard shortcut to ctrl-g
unbind C-b
set -g prefix C-g
bind C-g send-prefix
bind g send-prefix
#end of keybord shortcut setting
Highlight active window
set-window-option -g window-status-current-bg red
Set window notifications
setw -g monitor-activity on
set -g visual-activity on
#automatically rename windows according to the running program
setw -g automatic-rename
#set scroll back buffer
set -g history-limit 10000
set -g default-terminal "xterm-256color"
set -g base-index 1
set -g status-left '#[fg=green]#H

This illustrates a method to change the default keybinding and some
useful settings.

Please note that you can force tmux to use another configfile with
the -f command line switch like so:

tmux -f mytmuxconf.conf

There is a nifty cheat sheet 3 for the most important
screen and tmux keybindings or even a whole book about tmux 4.

byobu

[Byobu] is a wrapper around one of screen or tmux. It
provides profile support, F-keybindings, configuration utilities and a
system status notification bar for most Linux, BSD or Mac operating systems.

Byobu is available in major distros as a packaged binary. Launching byobu will
run whichever the package maintainer included as a dependency, if you have both
installed, you can select explicitly with byobu-{screen,tmux}. Basic
configuration is launched with F9 or byobu-config.

Scrollback starts with F7, mark the start of your buffer by hitting the
spacebar, then use the spacebar again to mark the end of your selection (which
will be copied into byobu’s clipboard automatically). Press Byobu-Escape
(typically Ctrl-A) + [to paste.

References

	1

	http://tmux.sourceforge.net/

	2

	Please note that tmux ls will only list tmux sessions that belong to your userid!

	3

	http://www.dayid.org/os/notes/tm.html

	4

	http://pragprog.com/book/bhtmux/tmux

	5

	https://launchpad.net/byobu

	Byobu

	http://byobu.co/

Shell customisations

As you read in Shells, your shell is your primary tool during the
work day. It’s also incredibly customisable to suit your needs. Let’s look at
some changes you can make.

How to customise your shell

Your shell’s configuration is stored in its rc file. For bash, this file is
~/.bashrc. Each time you edit this, you can reload the configuration by
typing:

source ~/.bashrc

Changing your prompt

Your default prompt probably looks something like this:

bash-3.2$

That’s pretty plain and doesn’t tell you much. In fact, all it does tell you is
that you’re using Bash version 3.2, and that you are not the root user (the
$ at the end signifies a regular user, whereas if you were root, you would
see a # instead).

Let’s change this up a little. Edit your ~/.bashrc file, and add this line
to the end:

PS1="\u@\h \w> "

Save, quit, and then reload your .bashrc file. Your prompt should change to
something like this:

avleen@laptop ~>

Much better! Now your know your username, the name of the machine you’re on (in
this case “laptop”), and the directory you’re in (“~” is your home
directory).

The PS1 variable has a lot of different options you can use to customise it
further.

Mosh

Mosh (MObile SHell) is an alternative to remote shell commands, such as ssh
or rsh. The beauty of the Mosh protocol is that it supports intermittent
connectivity without losing the remote session.

You can start a mosh session just like you would with ssh on one side
of town with one IP address, shut your laptop and go home, then open your
laptop and connect back to your Mosh session like it was never interrupted.
Also, if your wifi is spotty or internet connection is intermittent, mosh
doesn’t break the session when the connection drops out, unlike ssh.
Mosh does not wait for the remote server to confirm each keystroke before
displaying it to a terminal. Instead, it displays the typed characters locally
and confirms entry on the remote end. There are packages available for GNU/Linux,
FreeBSD, Solaris, Mac OS X, Chrome and even Android apps.

Mosh must be installed on both the client and remote server. When a session
is started it spins up a mosh-server and a local mosh-client process. It can
be installed in a home directory without privileged access. Mosh respects
your current ~/.ssh/config so migrating from ssh to mosh is
relatively seamless.

SSH connections work by sending a stream of data back and forth between the client
and server. This stream can be broken in various ways, such as the connection
timing out due to inactivity, or the client machine suspending state and shutting
down network devices. The Mosh protocol is based on UDP packets compared to the SSH
protocol that uses TCP packets. Mosh is the first application to use the Stateless
Syncronization Protocol. Instead of a stream of data between the server and client
that makes up a session over SSH, Mosh works by keeping a mirrored copy of the
session on the client and server and syncronizing the changes between them.

While ssh has been around long enough to have time tested security,
mosh is relatively new and has not been through the same extensive testing.
It is the first application to use the SSP protocol. Mosh does tunnel traffic
encrypted with AES-128 in OES mode, however Mosh hasn’t been under the
security spotlight as long as SSH has.

Examples

Mosh works just like ssh:

mosh username@remoteserver.org

You can also have mosh utilize ssh style commands such as: This specifies the
private key to use to authenticate with the remove server.

mosh username@remoteserver.org --ssh="ssh -i ~/.ssh/identity_file"

This tells mosh to connect via the ssh port 1234 on the remote server, where
ssh normally runs on port 22.

mosh username@remoteserver.org --ssh="ssh -p 1234"``

References

Ticketing systems

Note-taking

Wiki

EverNote

OneNote

Security 101

Authentication in unix

Todo

Discuss how authentication works.
Touch on /etc/(passwd|group|shadow), hashing.
What are groups? Lead in to the users/groups permissions model and how
permissions are based on the user/group/other bits.

Adding and deleting users and groups

Standard unix filesystem permissions

The simplest way of displaying filesystem permissions is by typing:

$ ls -l
drwxr-xr-x 2 john company 68 3 Oct 10:34 files
-rwxrwxrwx 1 john company 0 3 Oct 10:29 hello_world.txt

The left column is a 10-character string that indicates the permissions for a file. It consists of the symbols d, r, w, x, -.

	Directory (d) - This is the first character in the permissions string.
This indicates a directory.
Otherwise, the first character is a - to indicate that it is not a directory.

	Read (r) - The read permission allows the user to read the contents of the file or list the files in the directory.

	Write (w)- The write permission allows the user to write or modify a file.
In the case of directories, the use may delete files from the directory or move files into the directory.

	Execute (x) -The execute permission allows the user to execute a file or access the contents of a directory.
In the case of directories, this indicated that the user may read files in the directory, provided that the user has read permission on an individual file.

The 9 remaining characters are split into 3 sets to represent the access rights based on 3 groups of users.
Take the “files” directory above as an example, we can split the characters like this: [d][rwx][r-x][r-x]

	The first character, as explained above, indicates a directory or a file

	The first group gives the file permissions for the owner of the file or directory.
This means that the user “john” has read/write/execute permissions to the directory.

	The second group gives the file permissions for the group of users to whom the file or directory belongs to.
This means that anyone who is under the group “company” has read/execute permissions to the directory.

	The third group gives the file permissions for other users.
Basically anyone who are not the owner or a part of the user group.
This means that everyone else has read/execute permissions to the directory.

Some more examples of permissions:

	-rwxrwxrwx is a file everyone can read, modify (including delete), and execute.

	-rw------- is a file only the user can read and modify.

PAM

Chroot, jails and containers

Sudo (or, “Why you should not log in as root”)

History and Lore

The Morris Worm

http://www.snowplow.org/tom/worm/worm.html

/bin/false is not security

https://web.archive.org/web/20150907095805/http://www.semicomplete.com/articles/ssh-security

Security 201

Centralised accounts

LDAP and Kerberos

Active Directory

NIS, NIS+, YP, Hesiod

Firewalls and packet filters

host vs network

“Crunchy outer shell, soft center is bad”

In general terms, implementing defense-in-depth strategies is always a sensible
practice. The concept in which multiple layers of security controls (defense)
are placed throughout an information technology (IT) system. Its intent is to
provide redundancy in the event a security control fails or a vulnerability is
exploited.

Implementing a firewall on the network and host-based packet filters
provides defense-in-depth layers to your infrastructure. In today’s landscape,
the firewall aspect could be a service like ec2 security groups with host-based
packet filters such as iptables, Windows Firewall (or WFAS). Although this can
add additional complexity to deployment, that is not a reason to not implement
it where appropriate.

The defense-in-depth concept is mostly regarded in terms of attack and
compromise, however in ops it also safeguards us as everyone makes mistakes.
Sometimes, we ourselves or our colleagues are the point of failure.

Strange as it may seem, people often make the mistake of disabling “rules” when
something is not working and they cannot figure out why. The just checking
test. This is always the first mistake. In real world operations these things
do happen, whether it is a just checking mistake, an incorrect configuration
or action, sometimes we make serious mistakes, to err is human.

In all these situations using a firewall/other and host-based packet filters
comes to the fore:

	It protects us, the people working on the systems, from ourselves.

	It protects the organisation’s assets in the event of a failure or compromise
at either layer, whether it be user error or a systematic failure.

	It keeps us proficient and in-hand on both the network specific
security implementation, the host-based security practices and the
applications related to their management.

	It is good practice.

An old skool, real world example:

	You have a MSSQL server running on Windows Server 2000 (no “firewall” back
then & ip filters are not enabled) - it has both private and public network
interfaces.

	The MSSQL server has a public NIC because it has run replication with your
customer’s MSSQL server sometimes for dev purposes and catalog updates.

	You have rules on the diversely routed, mirrored NetScreen NS1000 firewalls
that allows port 1433 between the MSSQL servers only on the public interface.

	Your colleague has an issue that cannot be resolved and quickly just sets the
firewall/s to “Allows from all”, the just checking test.

	Immediate result - network unreachable.

	SQL Slammer had just arrived and proceeded to gobble up 2Gbps of public T1
bandwidth.

	All points into the network and the network itself are saturated until you
debug the issue via the serial port on the firewall and figure out what
happened.

The synopsis is that a practice of disabling rules was implemented, as it had
always been the last line in debugging. It was a practice that had been done
many times by the engineers in the organisation at the time with no “apparent”
consequences in the past. This time differed in that the MSSQL server had a
public interface added to allow for replication with the customer and
SQL Slammer was in the wild.

If the MSSQL server had ip filtering enabled as well the situation would have
been mitigated. Needless to say, it was the last time “Allow from all” debug
strategy was ever implemented. However it is useful to note, that because this
was done all the time, the engineer in question did not even tie the action of
“Allow from all” and the network becoming unreachable together at the time,
because the action previously had never resulted in the outcome that was
experienced in this instance.

Stateful vs stateless

IPTables: Adding and deleting rules

pf: Adding and deleting rules

Public Key Cryptography

Todo

What is PKI? What uses it? Why is it important?

Using public and private keys for SSH authentication

Two factor authentication

Building systems to be auditable

Data retention

Log aggregation

Log and event reviews

Role accounts vs individual accounts

Network Intrusion Detection

Host Intrusion Detection

Defense practices

Risk and risk management

Compliance: The bare minimum

What is compliance and why do you need it?

What kinds of data can’t you store without it?

Legal obligations

Dealing with security incidents

ACLs and extended attributes (xattrs)

SELinux

AppArmor

Data placement

Eg, local vs cloud, the implications, etc

Additional reading

Ken Thompson, Reflections on Trusting Trust:
http://dl.acm.org/citation.cfm?id=358210

Troubleshooting

A key skill for anyone doing operations, is the ability to successfully
troubleshoot problems.

	Methodologies

	Triaging with differential diagnosis

	Preparing your toolbelt

	Walk through of a diagnosis

	Recent changes

	Learning common errors

	Cannot bind to socket

	Permission denied reading from / writing to disk

	Out of disk space

	Mystery problems and SELinux

	Out of inodes

	Working effectively during a crisis

	The Importance of Procedure

	Non-technical skills

Methodologies

Here we will got over a few steps you can take to help quickly narrow down
problems to their causes.

Triaging with differential diagnosis

What is broken? First think about how it works in most basic terms.
Then build on that the things which can break.
Then from those, pick the ones that could cause the symptoms you see.

	Example:

	You cannot ping a server.

Preparing your toolbelt

You have a variety of tools at your fingertips to help work out the cause of a
problem. Over time you will expand what is in your toolbelt, but to start with
you must know how to use each of these:

	top, vmstat, iostat, systat, sar, mpstat
help you see the current state of the system - what is running, what is
using cpu, memory? Is the disk being heavily used? There is a great deal of
information, and knowing how these tools work will help you pick out the bits
you should focus on.

	tcpdump, ngrep
If you suspect you have a network-related problem, tcpdump and ngrep
can help you confirm it.

Walk through of a diagnosis

	Eliminating variables

	What changed recently?

	Could any of the symptoms be red herrings?

	Common culprits (is it plugged in? is it network accessible?)

	Look through your logs

	Communicating during an outage

	‘Talking Out-Loud’ (IRC/GroupChat)

	Communicating after an outage (postmortems)

Recent changes

Often problems can be traced back to recent changes.
Problems that start around the time of a change aren’t usually coincidence.

Learning common errors

Over time you may find that a small set of errors cause a large portion of the
problems you have to fix. Let’s cause some of these problems and see how we
identify and fix them.

Cannot bind to socket

There are two common reasons that you can’t bind to a socket: the port is
already in use, or you don’t have permission.
As an example, you can see what happens when I try to start a Python
SimpleHTTPServer on a port that is already in use:

user@opsschool ~$ python -m SimpleHTTPServer 8080
...
socket.error: [Errno 98] Address already in use

Here’s an example of what happens when I try to bind to a privileged port
without proper permissions (in Linux, ports < 1024 are privileged):

user@opsschool ~$ python -m SimpleHTTPServer 80
...
socket.error: [Errno 13] Permission denied

Permission denied reading from / writing to disk

Out of disk space

(finding large files, and also finding deleted-but-open files)

Mystery problems and SELinux

Out of inodes

Manifests as “disk full” when df claims you have disk space free.

Working effectively during a crisis

Being able to work successfully through a crisis is crucial to being a good
operations person. For some it is a personality trait, but it can certainly be
learned and is almost a requirement for many employers.

A very important skill to learn is the ability to remain calm in the face of
disaster. It’s not always easy, especially with a client on the phone, but
panicking will only make a situation worse. Yes, the most critical server in
the infrastructure may have just completely failed without a backup. Instead of
focusing on what will happen as a result of the crisis, focus on what needs to
be done to bring the system back up. Deal with the results later, after fixing
the immediate failure. The fallout of the crisis might be terrible, but it will
almost certainly be worse if the immediate problem isn’t fixed. A calm
mind can carefully analyze a situation to determine the best solution.
Panic responses do not benefit from the same calculating rationality.

Different people will adapt to handling crisis situations in different ways.
Some will adopt the detached, analytical calm of a surgeon. Others will
take a few deep breaths to calm themselves before digging in to analyze
the problem. The ability to stay calm in the face of disaster is more
important than the method by which calm is achieved. It will take
practice to reach the point of reacting to a disaster calmly.

Avoid placing blame. It doesn’t accomplish anything beyond creating
animosity and tension when a team most needs cohesion and efficiency.
While a good practice in general, it is even more important to resist
the urge to point fingers during a crisis. It doesn’t assist in solving
the problem, which is the top priority. Everything else is secondary.

The Importance of Procedure

Creating procedures for responding to disasters provides both a
checklist of things to do in the given situation as well as a structured
way to practice responding to the situation. The practice serves to
solidify understanding of how to react, while the procedure itself
provides a target of mental focus during an actual disaster. Adhering to
the procedure ensures the steps taken to resolve a crisis are well-known
and tested. Focus on the procedure to the exclusion of everything else.

That said, not every situation will have an associated procedure. These
situations call for their own procedures. Try to create a procedure for
every situation that doesn’t already have one. This diligence pays off
over time, as history tends to repeat itself. In addition to this, a
procedure for situations lacking a procedure provides a safety net when
everything else fails. This will differ from one organization to the
next, but the value is constant.

Like backups, no disaster recovery procedure is useful unless and until it is
tested. Thorough testing and practicing–in a real environment if
possible–quickly finds problems that will happen in the real world. Beyond
having procedures for known possible failures, a procedure for situations other
procedures do not cover provides a fallback for what to do in the inevitable
unpredictable crisis.

In addition to the technical sector, other industries deal regularly with
crisis response–fire fighters, law enforcement, paramedics. These organizations
have their own procedures. These industries all predate technology, offering
much to learn.

Non-technical skills

Situational Awareness (Mica Endsley)
Decision Making (NDM and RPD) - Klein
Communication (Common ground, Basic Compact, Assertiveness)
Team Working (Joint Activity, fundamentals of coordination and collaboration)
Leadership (before, during, after incidents) (Weick, Sutcliffe work on HROs)
Managing Stress
Coping with Fatigue
Training and Assessment Methods
Cognitive Psychology concerns (escalating scenarios, team-based troubleshooting)

Networking 101

This chapter should provide enough knowledge on networking to enable a systems
administrator to connect a Linux server to a network and troubleshoot basic
network-related problems. First, we will go over the basics of the 7-layer Open
Systems Interconnection (OSI) model, which is a standard framework with which to
describe communication system logical layers. Next, we will delve into each layer of the OSI
model in more detail as it applies to the role of systems administration.

Before any discussion of networking, however, it’s important to have a
working knowledge of the numbered Request for Comments (RFC) documents
and how they apply to computer networking. These documents describe the technical
specifics for every protocol you will run into (e.g., TCP, IP, HTTP, SMTP), and
as such are the authoritative source for how computers communicate
with one another.

The RFC Documents

Starting in 1969, the RFC document series describes standards for how computers
communicate. The series gets its name from the RFC process, wherein industry
experts publish documents for the community at large and solicit comments on
them. If the Internet community finds errors in a document, a new, revised
version is published. This new version obsoletes the prior versions. Some
documents, such as the document specifying email messages, have had several
revisions.

The RFC Editor [http://www.rfc-editor.org/] manages the RFC archive, as well
as associated standards. New documents go to the RFC Editor for publication
1, whether revision or new standard. These documents go through a
standardization process, eventually becoming Internet-wide standards. Many of
the networking protocols discussed in later chapters have RFCs governing their
behavior, and each section should provide information on the relevant RFCs.

	1

	This is a simplification, as there are actually many standards
bodies involved in the process. The RFC Editor Publication Process [http://www.rfc-editor.org/pubprocess.html] document explains in full detail.

Important RFCs

There are a number of RFCs which don’t pertain to any specific technology but
which are nevertheless seminal. These documents establish procedure or policy
which have shaped everything after, and as such have a timeless quality.
In some cases, later documents make references to them. This list is given in
increasing numerical order, though is not exhaustive.

	RFC 1796 [https://tools.ietf.org/html/rfc1796.html]: Not All RFCs are Standards

This document describes the different kinds of documents in the RFC series.

	RFC 2026 [https://tools.ietf.org/html/rfc2026.html]: The Internet Standards Process

This document (and those that update it) describes in detail how RFCs are
published and how they become Internet standards.

	RFC 2119 [https://tools.ietf.org/html/rfc2119.html]: Key words for use in RFCs to Indicate Requirement Levels

This document, referenced in many following RFCs, presents a common vocabulary
for specifying the relationship between a standard and implementations of that
standard. It provides keywords that specify how closely an implementation
needs to follow the standard for it to be compliant.

	RFC 5000 [https://tools.ietf.org/html/rfc5000.html]: Internet Official Protocol Standards

This document provides an overview of the current standards documented by the
RFCs and which RFC is the most recent for each standard. This document is
regularly updated with the current standards document status.

OSI 7-layer model (OSI Reference Model)

The early history of computer networking was marked by various proprietary
implementations of networking hardware and the protocols that ran on them (such
as for example, IBM’s “Systems Network Architecture” (SNA) and Digital Equipment
Corp’s “DECnet”.) In the mid-1970’s, two standards organizations (the
International Organization for Standardization, known as the “ISO”, and the
International Telecommunications Union, known as the “ITU”) led a push to define
a set of open interconnection standards, which became known as the “Open Systems
Interconnection” (OSI) standard. While the actual protocols they developed did
not become popular and are not in wide use today, the model they came up with
has achieved wide popularity as a way of thinking about the network protocol
stack. It’s important to understand that the OSI model is a conceptual model,
and therefore more of a mental framework than a technical framework. It is useful
primarily for troubleshooting and explanation purposes. While the OSI model may
seem esoteric as you’re learning it, it will eventually prove invaluable to your
daily work once you have a grasp of the concepts.

The OSI model describes seven layers of abstraction that enable software
programs to communicate with each other on separate systems. The seven layers
are designed to allow communication to occur between systems at a given level,
without concern for how the lower levels are implemented. In this way,
innovation on the protocols in the various layers can be achieved without
modifying any other layer’s design and code. The job of each layer is to provide
some service to the layer above by using the services provided by the layer
below.

	Layer 1 - Physical layer

The physical layer describes the physical connections between devices. Most
enterprise networks today implement Ethernet at the physical layer, described
in IEEE 802.3 for wired connections and IEEE 802.11 for wireless networks.
Other Layer 1 protocols that are no longer in wide use today are Token-Ring, and FDDI.

	Layer 2 - Data link layer

The data link layer defines the basic protocol for communicating between two
points on a network, that may consist of many intermediate devices and cables,
possibly spanning a large geographic area. The IEEE 802.3 specification defines
the data link layer, which includes the Media Access Control (MAC)
addresses that allow hosts to address their data to one or more systems on the
same Ethernet segment. The MAC address is a flat (non-hierarchical) 48-bit
address, and therefore when a node sends out a MAC broadcast frame (usually
written as FF:FF:FF:FF:FF:FF), all stations on the Layer 2 segment receive it.
Therefore, a layer 2 segment is also known as a “broadcast domain”.

	Layer 3 - Network layer

The network layer is what allows many flat Layer 2 segments to be
interconnected, and separates broadcast domains. It is this layer of
the OSI model that enables the Internet to exist, using Internet Protocol
(IP) addressing. Version 4 of the Internet Protocol (IPv4), most commonly found in
today’s production networks, is described in RFC 791 [https://tools.ietf.org/html/rfc791.html]. Its successor, IP version
6 (IPv6) is described in RFC 2460 [https://tools.ietf.org/html/rfc2460.html]. Both protocols utilize addresses that are
hierarchical in nature, providing for a network portion of the address space,
and also a host portion within the network.

There are also two control protocols included in this layer; namely, the
“Internet Control Message Protocol” (“ICMP”) as described in RFC 792 [https://tools.ietf.org/html/rfc792.html], and
“Internet Group Management Protocol” (“IGMP”), as described in RFC 1112 [https://tools.ietf.org/html/rfc1112.html]. The
ICMP protocol provides for Layer 3 device control messaging, and among other
uses, allows small test packets to be sent to a destination for troubleshooting
purposes, such as those used by the ubiquitous ping utility. The IGMP
protocol is used to manage multicast groups, which implements “one-to-many”
packet sending between interested systems.

	Layer 4 - Transport layer

The transport layer is where things really start to get interesting for the
systems administrator. It is at the transport layer that the Transmission
Control Protocol (TCP), and the User Datagram Protocol (UDP) are defined.
The TCP and UDP protocols allow data to be sent from one system to another using
simple “socket” APIs that make it just as easy to send text across the globe as it
is to write to a file on a local disk - a technological miracle that is often
taken for granted.

	Layer 5 - Session layer

The purpose of the session layer is to provide a mechanism for ongoing
conversations between devices using application-layer protocols. Notable
Layer 5 protocols include Transport Layer Security / Secure Sockets Layer
(TLS/SSL) and, more recently, Google’s SPDY protocol.

	Layer 6 - Presentation layer

The job of the presentation layer is to handle data encoding and decoding as
required by the application. An example of this function is the Multipurpose
Internet Mail Extensions (MIME) protocol, used to encode things other than
unformatted ASCII text into email messages. Both the session layer and the
presentation layer are often neglected when discussing TCP/IP because many
application-layer protocols implement the functionality of these layers
internally.

	Layer 7 - Application layer

The application layer is where most of the interesting work gets done,
standing on the shoulders of the layers below. It is at the application layer
that we see protocols such as Domain Name System (DNS), HyperText Transfer
Protocol (HTTP), Simple Mail Transfer Protocol (SMTP), and Secure SHell
(SSH). The various application-layer protocols are at the core of a good
systems administrator’s knowledge base.

TCP/IP (ARPA) 4-layer model

When the ARPAnet project spawned TCP/IP, which became the dominant network
protocol stack used on the Internet, it was envisioned with a much simpler
4-layer stack (the ISO layers roughly map to the ARPA model as indicated below.)
The elements of this stack from the lowest to highest are as follows:

	Link Layer

Basically a combination of the ISO Layer 1 (physical) and Layer 2 (data link) layers.
This layer covers the physical network card in the computer (and the transmission
medium between the computers) as well as the device driver in the operating system
of the computer. As an example, both Ethernet and MAC are covered in this layer.

	Network Layer

This layer maps to the ISO’s Layer 3, and covers the movement of packets between
networks. For this reason, it is also called the “Internet Layer”, and the main
protocol used in this layer is named the “Internet Protocol”, or “IP” as it is commonly
referred to. As discussed above, the ICMP and IGMP protocols are also included in
this layer.

	Transport Layer

This layer maps to the ISO’s Layer 4, and covers the creation, management and teardown
of “virtual circuits” or “flows” between end hosts. There are two different protocols
in use at this layer as discussed above in the ISO Layer 4 section, namely, TCP and
UDP.

	Application Layer

This layer maps to the ISO’s Layer 5 through Layer 7, and covers the application
processes that use the network to communicate.

IP Addressing

IPv4

Internet Protocol Version 4 (IPv4) is the fourth version of the Internet
protocol, the first version to be widely deployed. This is the version of the
protocol you’re most likely to encounter, and the default version of the IP
protocol in Linux.

IPv4 uses a 32-bit address space most typically represented in 4 dotted decimal
notation, each octet contains a value between 0-255, and is separated by a dot.
An example address is below:

10.199.0.5

There are several other representations, like dotted hexadecimal, dotted octal,
hexadecimal, decimal, and octal. These are infrequently used, and will be
covered in later sections.

IPv6

The Internet has experienced tremendous growth from its beginnings in research
at universities to its use in e-commerce and other applications today.
As a result, more and more IPv4 addresses were given out to enable users to connect
to the Internet.
However, despite the number of IPv4 addresses being a large number (4294967296), they
are slowly running out.

Internet Protocol Version 6 (IPv6) is the latest version of the Internet protocol
which aims to address the IPv4 address exhaustion problem.

Probably the most obvious difference of IPv6 to IPv4 is the representation of addresses.
Unlike IPV4, IPv6 uses a hexadecimal format to represent a 128-bit address. The format is
grouped into 8 groups of four hexadecimal digits separated by a colon.
For example:

2001:0DB8:0000:CBAD:4321:0000:0000:1234

Leading zeroes may be left off of a group in the address. Whole groups of zeros may be
left out entirely, but only once. Generally, the longest run of zeros is dropped, but
any run may be. Using these rules, the above address can also be represented in either
of these ways:

2001:DB8::CBAD:4321:0000:0000:1234
2001:DB8:0000:CBAD:4321::1234

TCP vs UDP

Both TCP RFC 793 [https://tools.ietf.org/html/rfc793.html] and UDP RFC 768 [https://tools.ietf.org/html/rfc768.html] provide data transfer between processes
through ports. These process ports can be on the same computer or separate
computers connected by a network. TCP provides the following: reliability,
flow control, and connections (see Example Difference 1 below). UDP is less
feature-rich, it does its work with a header that only contains a source port,
destination port, a length, and a checksum. TCP provides its capabilities
by sending more header data, more packets between ports and performing more
processing. UDP requires less header data in the individual
packets and requires fewer packets on the network to do its work. UDP does no
bookkeeping about the fate of the packets sent from a source. They could be
dropped because of a full buffer at a random router between the source and
destination and UDP wouldn’t account for it in itself (other monitoring systems
can be put in place to do the accounting, however that is beyond the UDP
protocol).

The choice of protocols to use is often based on whether the risk of losing
packets in real-time without immediate alerting is acceptable. In some cases
UDP may be acceptable, such as video or audio streaming where programs can
interpolate over missing packets. However, TCP will be required due to its
reliable delivery guarantee in systems that support banking or healthcare.

	Example 1

The TCP protocol requires upfront communication and the UDP protocol does
not. TCP requires an initial connection, known as the “three way handshake”,
in order to begin sending data. That amounts to one initial packet sent
between ports from initiator of the communication to the receiver, then
another packet sent back, and then a final packet sent from the initiator
to the receiver again. All that happens before sending the first byte of
data. In UDP the first packet sent contains the first byte of data.

	Example 2

TCP and UDP differ in the size of their packet headers. The TCP header is
20 bytes and the UDP header is 8 bytes. For programs that send a lot of
packets with very little data, the header length can be a large percentage of
overhead data (e.g. games that send small packets about player position and state).

Subnetting, netmasks and CIDR

A subnet is a logical division of an IP network, and allows the host system to
identify which other hosts can be reached on the local network. The host system
determines this by the application of a routing prefix. There are two typical
representations of this prefix: a netmask and Classless Inter-Domain Routing (CIDR).

Netmasks typically appear in the dotted decimal notation, with values between
0-255 in each octet. These are applied as bitmasks, and numbers at 255 mean that
this host is not reachable. Netmask can also be referred to as a Subnet Mask and
these terms are often used interchangeably. An example IPv4 address with a typical
netmask is below:

	IP Address

	Netmask

	192.168.1.1

	255.255.255.0

CIDR notation is a two-digit representation of this routing prefix. Its value can range
between 0 and 32. While having long been a staple in network equipment and used mainly by
network engineers, CIDR notation can now be found in Linux (iproute’s ip command uses
CIDR notation). In addition, CIDR notation is often encountered in discussions, as it’s
quicker and simpler to reference than a netmask. Below is the same example as above
with CIDR notation:

	IP Address

	CIDR

	192.168.1.1

	/24

As a server administrator, it is helpful to understand subnetting so as to communicate more
effectively with network engineers, and to design networks yourself. There are many guides
online for learning how to subnet, each with different approaches and tricks. A full subnetting
guide is out of the scope of this document.

Classful addressing

You may hear people refer to networks as “Class A”, “Class B”, or “Class C”. This is known
as “Classful Addressing” and has been deprecated for decades, thanks to the introduction
of CIDR in 1993 (RFC 1519 [https://tools.ietf.org/html/rfc1519.html]). Classful addressing has the drawback of assuming that a
network is drawn on very large boundaries. For example, in the table in the next section,
each block would be a single network. One can see how using an entire /16 (65534 hosts)
when only five hosts are needed would be wasteful. As such, CIDR was created, allowing
people to create subnets only as large as required. For these reasons, one should not refer
to any particular network block as a “Class X” (eg, 10.0.0.0/28 should not be called a Class A
network) as it is misleading at best, and incorrect at worst. You should always use CIDR
notation to ensure accuracy.

Private address space (RFC 1918 [https://tools.ietf.org/html/rfc1918.html])

Certain ranges of addresses were reserved for private networks. Using this address space
you cannot communicate with public machines without a NAT gateway or proxy. There are
three reserved blocks:

	First Address

	Last Address

	Netmask

	CIDR

	10.0.0.0

	10.255.255.255

	255.0.0.0

	/8

	172.16.0.0

	172.31.255.255

	255.240.0.0

	/12

	192.168.0.0

	192.168.255.255

	255.255.0.0

	/16

Static routing

NAT

Network Address Translation, or NAT, is a technology that allows multiple
internet-connected devices to share one common public IP address, while
still retaining unique, individual private IP addresses. The distinction
between public and private is integral to the understanding of the service
that NAT provides and how it works.

In our Sample Network we can see that two firewall
machines sit between the Internet and the other hosts in the network; traffic
going in and out of the network will pass through these firewall machines. The
addresses assigned to the firewalls (10.10.10.1 and 10.10.10.2) are private IPs
and are visible to just the hosts within the network. A device on the external
Internet will, instead, see the public IP address for each firewall. It’s
important to note that none of the hosts within the network will have a public
IP address, except for the firewalls and the DNS servers, since they are the
only parts of the network that directly communicate with the external Internet.

When a device behind a NAT-enabled router sends a packet, the source IP address
on the packet is the device’s local, private IP address. If the packet is going
outside the local network, it will pass through a router, which will modify the
source IP address to its own public IP address. When a response for the packet
is received by the router, it needs to ensure that the response can be forwarded
to the host that sent the packet in the first place. To do this, the router
maintains a Translation Table. This table maps a device’s IP address and
port to a port on the router itself. The router’s public IP address and
the correct port number from the table are used as the source IP and port on
the packet and then sent to the destination.

These maps are temporary and exist on a per-connection basis. This means that each
connection opened by a device will have a unique port number on the device and a
unique port number on the router as well. This port on the router is used as the
public port for that connection. Once the connection terminates, the router is
free to assign that port to another connection. However, the total number of
available ports is limited to 65,536, so it is entirely possible that a router
has no more free ports and cannot assign a new NAT address. This is commonly
referred to as port exhaustion.

Similar to port exhaustion, timeouts can also affect the router’s ability to
assign new NAT addresses. Each entry in the translation table has a timeout
value which refers to the amount of time for which that entry can remain
inactive and still keep its place in the table. An entry that has remained
inactive for a period of time longer than the timeout will automatically be
removed, freeing up space for a new one.

Networking cable

There are two main types of network cable in use today, namely copper and fiber-optic.

Copper

The most common type of network cables are what is known as “unshielded twisted
pair” cables. They use 4 sets of twisted pairs of copper, relying on the twist
with differential signaling to prevent noise and signal propagation between the
pairs. The four pairs of twisted copper wires are encased in a plastic sheath.

There are different standards for copper network cables set by the
Telecommunications Industry Association (TIA) and the International Organization
for Standardization (ISO). Both organizations use the same naming convention
(“Category __”) for the components, but unfortunately differ on the naming for
the cable standards. The most common reference is the TIA’s, and the category
designation is usually shortened to “Cat”, so you’ll hear references to “Cat5”
or “Cat6” cable.

Copper Cable Standards

	Category 5e (“Cat5”, ISO class D)

	Category 6 (“Cat6”, ISO class E)

	Category 6A (“Cat6A”, ISO class Ea)

Fiber

Fiber is a generic term that refers to optical transport mediums. It comes in
several types, all of which look identical but are generally incompatible.

Multimode vs Single Mode

Single-mode fiber has a small core diameter, which only allows one (a single)
mode of light to be transmitted through the fiber. Using a single mode of light
completely eliminates the possibility of light dispersion and associated signal
loss, and so is used mainly for long-haul runs, such as the cables that run
between buildings and cities. However, since single-mode fiber can only transmit
one wavelength of light at a time, it typically involves much more expensive
light generation sources (i.e., laser diode transmitters) and is very expensive
to produce.

Multimode fiber has a larger core diameter (either 50u or 62.5u) and can
therefore carry multiple modes (“multimode”) of light, which can be used to
transmit much more information during a given timeslice. The drawback is that
carrying multimode lightwaves causes light dispersion and associated signal
loss, which limits its effective distance. Multimode is a less expensive fiber
optic cable, that is typically useable with lower cost optical components. It is
very common to see it used for building intra-building backbones, and
system/switch to switch applications.

Multimode Fiber Standards

Multimode cables have classifications much like the copper cables discussed above; these
are known as “Optical Multimode” (OM) classes. The four designations are:

	OM1 - a “legacy” fiber class, the core being 62.5u, and cladding being 125u.
The bandwidth that can be carried ranges from 160 to 500 MHz.

	OM2 - a “legacy” fiber class, the core being 50u, and cladding being 125u.
The bandwidth that can be carried is 500 MHz.

	OM3 - a “modern” fiber class, the core being 50u, and cladding being 125u.
The bandwidth that can be carried ranges from 1500 to 2000 MHz.

	OM4 - a “modern” fiber class, the core being 50u, and cladding being 125u.
The bandwidth that can be carried ranges from 3500 to 4700 MHz.

Optical Connector Types

LC and SC connectors are the two most common type of fiber connectors you will
use.

LC stands for “Lucent Connector”, but is also referred to as “Little Connector”.
They are typically used for high-density applications, and are the type of
connector used on SFPs or XFPs. Typically the connector is packaged in a duplex
configuration with each cable side by side, and have a latch mechanism for
locking.

SC stands for “Subscriber Connector”, but are also known as “Square Connector”,
or “Standard Connector”. This is the type of connector typically used in the
telecom industry. They have a larger form factor than the LC connectors, and can
be found in single and duplex configurations. SC connectors have a push/pull
locking mechanism, and because of this, are also colloquially known as
“Stab-and-Click” connectors.

Transceivers

The variety in optical fiber makes for a correspondingly large variety in
optical fiber interface standards. Different interface types will impose
different requirements on the fiber used and the length of the connection.

If optical fiber interfaces were incorporated directly into network equipment,
the number of models made by the manufacturer would have to be multiplied by
the number of interface standards in existence. For this reason, modern network
hardware rarely incorporates such interfaces directly. Instead, pluggable
transceiver modules are used as a layer of indirection between medium-dependent
and medium-independent interfaces. This allows a transceiver slot to be
provided supporting any desired interface standard, whether copper or fiber.
There are some limitations to this, detailed below.

Various module types have been introduced over the years:

	Name

	Introduced

	Speed

	Size

	GBIC

	1995

	1 Gb/s

	Large

	SFP

	2001

	1 Gb/s

	Small

	XENPAK

	2001

	10 Gb/s

	Large

	XFP

	2002

	10 Gb/s

	Small

	SFP+

	2006

	10 Gb/s

	Small

	QSFP

	2006

	40 Gb/s

	Small

	CFP

	2009

	100 Gb/s

	Large

There are a large number of compatibility issues with such modules. Some
compatibility issues cause problems between two ends of a link; others cause
problems between a module and its host device.

	Transceivers are not generally compatible with lower speed versions of the
same standard. A 1000BASE-T Ethernet card can interface with a 10BASE-T card,
but a 1 Gb/s fiber transceiver cannot interface with a 10 or 100 Mb/s
transceiver. In the case of fiber, this is generally due to the different
wavelengths used; but even many copper transceivers do not support lower
speeds, although some do. You should assume that any transceiver will only
support the exact interface for which it is designed unless specified
otherwise.

	Modules are only made for the speed targeted by a format. For example, SFP+
modules are only made for 10 Gb/s standards, and not for lower speeds.

	Some equipment may accept SFP modules in SFP+ slots, but this is not
universal.

	Vendor lock-in is widely practiced. Equipment may refuse to operate with the
modules made by a different manufacturer. Workarounds are generally
available, but this may complicate support or warranty arrangements.

These issues can create pathological cases. Suppose you have two switches which
should be connected to one another. One is connected via a 1 Gb/s transceiver
to fiber. The other only has SFP+ slots. If these slots also support SFP
modules, then a 1 Gb/s SFP transceiver can be used, but if they do not,
interconnection is impossible: all SFP+ modules target 10 Gb/s, and fiber
transceivers do not support lower speeds.

Twinax

Networking 201

VLANs, 802.1q tagging

Sometimes it is advantageous to break up a single Layer 2 broadcast domain into multiple Layer 2 broadcast domains.
As we had previously discussed, Layer 2 is addressed by MAC addresses, which are flat address space (non-routable) constructs; this creates a Layer 2 broadcast domain, also called a “segment” or “LAN” (local area network.) You can then map one or more IP networks (Layer 3 addressing) onto a Layer 2 segment.
If you map more than one Layer 3 network to a segment, you can get into some headaches, such as having to address multiple IP addr’s on various host and router interfaces (one for each network) with the attendant confusion, and also that broadcasts produced by each IP network (i.e. ARP requests) multiply, and bandwidth is consumed.
Therefore, most networking professionals agree that it’s best to only map one IP network to one Layer 2 segment.

So, if multiple Layer 3 networks need to be used, instead of using multiple switches for each Layer 2 segment, it is possible to divide a single VLAN-capable switch into two or more “virtual” switches.
This is possible due to the concept of VLAN, which stands for “Virtual LAN”.

To communicate between the Layer 3 networks mapped to their individual VLANs, packets need to pass through a router or other Layer 3 device.
If one has a switch with many VLANs implemented on it, either of these two methods could work:

	Devote a switch (and respective router) interface per VLAN, with a single link for each VLAN.
This is the simplest method, but the most wasteful of (expensive) switch and router interfaces.

	“Trunk” multiple VLANs over one physical link, which only requires a single interface per side (switch to router, or server to switch.)
This method multiplexes multiple VLANs over the one link by “tagging” the frame with a 4-byte VLAN identifier field which is inserted after the destination MAC field in the Ethernet header.
This tagging format is officially defined by the IEEE’s 802.1q protocol.
The tag field insertion happens at the sending trunk interface (which is a part of the sending station’s VLAN), and the tag is stripped of by the receiving trunk interface, and the frame placed on the proper VLAN on the receiving device.

The VLAN identifier must be between 1 and 4094 inclusive.
The 802.1q tag also provides for a 3-bit priority field and 1-bit discard eligibility field which can be used for QoS applications.
The trunking and priority functions of 802.1q can be enabled and disabled separately.

Spanning Tree

As networks and broadcast domains grow and become more complex, it becomes much easier to intentionally or unintentionally create loops- multiple network paths between one or more switches.
These loops may lead to a infinite forwarding of Ethernet packets, causing switches to be overwhelmed by an ever-increasing amount of packets being forwarded to all other switches in the broadcast domain.
To address this concern, Spanning Tree Protocol (STP) was invented as a standard protocol used by Ethernet switches, designed to prevent such loops in broadcast domains.

To disable loops, each switch that implements Spanning Tree Protocol (STP / IEEE 802.1D) will participate in electing a “root” device where the Spanning Tree is calculated from.
Once the root is chosen, all other participating switches will calculate their least-cost path for each of its ports to the root device.
This is usually a port that traverses the least number of segments between the source and the root.
Once each device has chosen its least-cost port, or Root Port (RP), it calculates the least-cost path for each network segment.
By doing this, each switch obtains a Designated Port (DP), or a port on which it should expect to accept traffic to forward through its RP.
Upon calculating these values, all other paths to the root device are disabled- marking them as Blocked Ports (BP).

A major benefit to using STP to prevent network loops is that network administrators can intentionally connect redundant paths for fault tolerance without worry of causing an infinite loop during normal operation.
Should a path in a broadcast domain fail, each participating switch will recalculate the DP and RP, modifying the status of BPs if necessary.
This has the effect of repairing the broken path by routing traffic through segments around the failure.

Routing

When a network is subdivided into multiple Layer 2 broadcast domains, Layer 3 addressing enables hosts to communicate with another host in another broadcast domain.

The process of forwarding packets from one Layer 2 subdomain to another Layer 2 subdomain using Layer 3 addresses is called routing.

A Layer 3 device or router is the device responsible for this function.
Routers may use many different ways to forward packets but these methods can be categorized into two types.

Static Routing

The method of using manually configured routes is called static routing.

Typically, there are three pieces of information that are needed to specify a static route:

	the destination subnet

	the latter’s subnet mask and

	the next hop host or outgoing interface.

Take for example the following static route configuration in Linux:

ip route add 10.10.20.0/24 via 192.168.2.1

The above command means that packets intended for hosts in the 10.10.20.0/24 network must be forwarded to the host with ip address 192.168.2.1.

Below is another example in Cisco IOS:

Router(config)# ip route 10.10.20.0 255.255.255.0 Serial0/0/1

Instead of passing a packet to a specific ip address however, this configuration states that packets intended for the 10.10.20.0/24 network should be forwarded to the host directly connected to Serial 0/0/1 whose ip address can be anything.

Static routes do not change when the network changes but can be useful in cases where the network is small enough that it outweighs the cost of dynamic routing.
It is often used in tandem with dynamic routing to specify a default route in case a dynamic route is unavailable.

Dynamic routing protocols (RIP, OSPF, BGP)

For a small network, manually configuring routes will work just fine.
As a network grows larger, however, doing this can be very arduous if not infeasible.
Dynamic routing solves this problem by programmatically building a routing table.

Here are some examples of dynamic routing protocols:

1. Routing Information Protocol (RIP) - RIP uses the number of routers between a router and the destination subnet as its path selection metric.
When a RIP router first comes online, it sends a broadcast message and then all its neighbor routers respond back with their own routing table.
This new RIP router then compares the routes in its own routing table with the routes from the other routing tables it has received.
If there are routes to other subnets that are currently not in its own routing table, that route is added.
More importantly, it updates routes in its own routing table if there is a route with less hops to a destination subnet.
RIP is part of a class of routing protocols called distance vector routing protocols.
They are characterized by their sharing of routing tables with their neighbors.
Similar protocols to RIP include Cisco’s Enhanced Interior Gateway Routing Protocol (EIGRP).
EIGRP is similar to RIP but uses a mix of path selection metrics such as bandwidth and delay to determine the route to a destination subnet.
Unlike RIP, it only sends updates incrementally to reduce overhead.

2. Open Shortest Path First (OSPF) - OSPF is a routing protocol that calculates the shortest path to each destination subnet in the network.
Routing protocols like OSPF that work this way are said to be called Link State routing protocols.
To be able to know the shortest path to each destination subnet, each router should know everything about the network from links, subnets and even other routers.
To do this in OSPF, each router packages routing information they know in a data structure called Link State Advertisements (LSA) and floods the whole network with this information.
Fellow OSPF routers listen for LSAs, collect this data and store them in a Link State Database (LSDB).
The point of all this sharing is for each router to have identical LSDBs.
Once this is achieved, each OSPF router calculates routes to all subnets from its own point of view using a shortest path algorithm.
These routes are added then added to the router’s routing table.

	Border Gateway Protocol (BGP) -

ACLs

Network Bonding (802.3ad / LACP link aggregation)

IOS switch configuration

Cisco devices use a command line-based configuration interface which can be accessed via RS-232, Telnet or SSH.
The command line syntax is distinctive and has been loosely copied by many other vendors, so some familiarity with the Cisco-style configuration can go a long way.

When connecting via RS-232, use 9600 baud, 8 data bits, 1 stop bit, no parity, no flow control.

You can abbreviate keywords on the command line without having to press Tab, so long as they are unambiguous.
You can also use Tab as you would in a UNIX shell.

While using the command line, you can type ‘?’ at any time and receive context-sensitive help.

The command line is mode-based. The prompt tells you of your current mode.
Awareness of your current mode is key to efficient operation of the command line.
Here are some examples:

	Prompt

	Meaning

	hostname>

	‘EXEC’ mode, non-privileged access
(like $ on Linux)

	hostname#

	‘EXEC’ mode, privileged access
(like # on Linux)

	hostname(config)#

	Global configuration mode

	hostname(config-if)#

	Interface configuration mode

EXEC mode allows you to execute imperative commands such as ping.
The configuration mode allows you to add and remove configuration statements.

The following commands move you between modes:

	Command

	Mode

	Effect

	enable

	EXEC

	Become privileged (like su on Linux)

	conf t

	EXEC

	Enter (config) mode.

	int <interface>

	config

	Enter (config-if) mode for an
interface.

	exit

	Any

	Leave the current mode or logout.

Other useful commands include:

	Command

	Mode

	Effect

	show ...

	EXEC

	The subcommands of this command provide
access to all available information.

	show run

	EXEC

	Show the current configuration.

	show ip int brief

	EXEC

	Show all interface names, IPv4 addresses,
and their status.

	wr

	EXEC

	Save the current configuration.

	ping <host>

	EXEC

	Ping. ‘!’ means a response,
‘.’ means a timeout.

	no <command>

	config

	Delete a configuration statement in config
mode.

	do <command>

	config

	Execute a command in EXEC mode from config
mode.

Note that configuration changes become active as soon as they are made.
The show run command shows the configuration which is currently in effect.
This is not saved until you execute wr.

GRE and other tunnels

Multi-homed hosts

Similarities and differences between IPv4 and IPv6 networking

Implications of dual-stack firewalls (especially under Linux)

Multicast uses and limitations

Latency vs. Bandwidth

http://www.stuartcheshire.org/rants/Latency.html

VPNs

IPSec

SSL

Network Troubleshooting

ping

ping should always be the first step in any network-related troubleshooting session, due to
the simple manner in which it works, and the information it returns.
Many times, the resulting information from a ping will point you in the next direction.
For example, if you notice jitter (ping responses varying wildly), you will know to start
looking at layer 1 problems somewhere on the path, and that available bandwidth probably
isn’t an issue.

You’re probably already familiar with the basic usage of ping, but there are some really handy options
that can used (these are on Linux, but also exist in most versions of ping, but under different flags).
Here are a couple of my most-often-used options:

-I - Change the source IP address you’re pinging from.
For example, there might be multiple IP addresses on your box, and you want to verify that a particular
IP address can ping another.
This comes in useful when there’s more than just default routes on a box.

-s - Set the packet size.
This is useful when debugging MTU mismatches, by increasing the packet size.
Use in conjuction with the -M flag to set MTU Path Discovery hint.

An example of using ping to test MTU:

user@opsschool ~$ ping -M do -s 1473 upstream-host
PING local-host (local-host) 1473(1501) bytes of data.
From upstream-host icmp_seq=1 Frag needed and DF set (mtu = 1500)
From upstream-host icmp_seq=1 Frag needed and DF set (mtu = 1500)
From upstream-host icmp_seq=1 Frag needed and DF set (mtu = 1500)

I’ve used the -M do option to set the ‘Don’t Fragment’ (DF) flag on the packet, then
set the packet size to 1473.
With the 28 bytes of overhead for Ethernet, you can see the total packet size becomes
1501–just one byte over the MTU of the remote end.
As you can see from the example, since the DF flag is set and the packet needs to fragment,
it spits back an error, and helpfully tells us what the MTU size is on the other end.
ping can be used to determine Path MTU (the smallest MTU size along a path), but other
tools are better for that (see below).

telnet

While telnet daemons are a big no-no in the wild (unencrypted traffic), the telnet client
utility can be used to test whether TCP connections can be made on the specified port.
For example, you can verify a TCP connection to port 80 by connecting via telnet:

user@opsschool ~$ telnet yahoo.com 80
Trying 98.138.253.109...
Connected to yahoo.com.
Escape character is '^]'.

A connection failure would look like this (using port 8000, since nothing is listening on that port):

user@opsschool ~$ telnet yahoo.com 8000
Trying 98.138.253.109...
telnet: connect to address 98.138.253.109: Connection timed out

You can also send raw data via telnet, allowing you to verify operation of the
daemon at the other end.
For example, we can send HTTP headers by hand:

user@opsschool ~$ telnet opsschool.org 80
Trying 208.88.16.54...
Connected to opsschool.org.
Escape character is '^]'.
GET / HTTP/1.1
host: www.opsschool.org

The last two lines are the commands sent to the remote host.

Here’s the response from the web server:

HTTP/1.1 302 Found
Date: Fri, 26 Dec 2014 14:55:45 GMT
Server: Apache
Location: http://www.opsschool.org/
Vary: Accept-Encoding
Content-Length: 276
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>302 Found</title>
</head><body>
<h1>Found</h1>
<p>The document has moved here.</p>
<hr>
<address>Apache Server at www.opsschool.org Port 80</address>
</body></html>
Connection closed by foreign host.

Here we passed the bare minimum required to initiate an HTTP session to a remote web server,
and it responded with HTTP data, in this case, telling us that the page we requested is located
elsewhere.

Note that the port you’re connecting to might the port for HTTP, but it could be something
other than an HTTP daemon running.
Nothing prevents a service from running on a port other than it’s usual one.
In effect, you could run a SMTP daemon on port 80, and an HTTP daemon on port 25.
Testing TCP connections with telnet would verify TCP operation, but you still would not
have a working web server on port 80.
Since the scope of this section is focused only on the networking aspect, see the other
sections of OpsSchool for troubleshooting daemon operation and Linux troubleshooting.

iproute / ifconfig

ifconfig is ubiquitous and a mainstay of any network-related work on Linux, but it’s actually
deprecated in RHEL7 [https://bugzilla.redhat.com/show_bug.cgi?id=1119297] (the net-tools
package which contains ifconfig isn’t included in RHEL 7/CentOS 7 by default) and many major
distributions include iproute by default.
The ifconfig [http://linux.die.net/man/8/ifconfig] man page also recommends using the iproute package.
All examples used below will use iproute, and will cover only the basics of troubleshooting.
It’s highly recommended to play around and see what you can find.
The ip [http://linux.die.net/man/8/ip] man page contains a wealth of knowledge on the tool.

ip addr show

Show all IP addresses on all interfaces.
Many options can be passed to filter out information.
This will show several important pieces of information, such as MAC address, IP address, MTU, and link state.

user@opsschool ~$ ip addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
 link/ether 08:00:27:8a:6d:07 brd ff:ff:ff:ff:ff:ff
 inet 10.0.2.15/24 brd 10.0.2.255 scope global eth0
 inet6 fe80::a00:27ff:fe8a:6d07/64 scope link
 valid_lft forever preferred_lft forever

ip route

Show all routes on the box.

user@opsschool ~$ ip route
10.0.2.0/24 dev eth0 proto kernel scope link src 10.0.2.15
169.254.0.0/16 dev eth0 scope link metric 1002
default via 10.0.2.2 dev eth0

ss

ss is the replacement for netstat, which is obsolete according to the netstat man
page [http://linux.die.net/man/8/netstat].
While most distributions will probably have netstat available for some time, it is
worthwhile to get used to using ss instead, which is already included in the iproute
package.

ss is very useful for checking connections on a box.
ss will show SOCKET, TCP, and UDP connections, in various connection states.
For example, here’s ss showing all TCP and UDP connections in the LISTEN state, with
numeric representation.
In other words, this shows all daemons listening on UDP or TCP with DNS and port lookup
disabled.

user@opsschool ~$ ss -tuln
Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port
tcp LISTEN 0 128 *:80 *:*
tcp LISTEN 0 50 *:4242 *:*
tcp LISTEN 0 50 :::4242 :::*
tcp LISTEN 0 50 *:2003 *:*
tcp LISTEN 0 50 *:2004 *:*
tcp LISTEN 0 128 :::22 :::*
tcp LISTEN 0 128 *:22 *:*
tcp LISTEN 0 100 *:3000 *:*
tcp LISTEN 0 100 ::1:25 :::*
tcp LISTEN 0 100 127.0.0.1:25 *:*
tcp LISTEN 0 50 *:7002 *:*

There are a few things to note in the output.
Local address of * means the daemon is listening on all IP addresses the server might have.
Local address of 127.0.0.1 means the daemon is listening only to the loopback interface, and therefore
won’t accept connections from outside of the server itself.
Local address of ::: is the same thing as *, but for IPv6.
Likewise, ::1 is the same as 127.0.0.1, but for IPv6.
In this example, we used the flags -tuln, which just happens to be one of my more-often
used sets of flags.

By default, ss shows only non-listening TCP connections:

user@opsschool ~$ ss

State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 0 10.0.2.15:ssh 10.0.2.2:64667

ss has many more useful flags than just these, which you can find in the ss man page [http://linux.die.net/man/8/ss].

traceroute

If you’ve familiarized yourself with the basics of networking, you’ll know that networks are comprised of
many different routers.
The internet is mostly a messy jumble of routers, with multiple paths to end points.
traceroute is useful for finding connection problems along the path.

traceroute works by a very clever mechanism, using UDP packets on Linux or ICMP packets on Windows.
traceroute can also use TCP, if so configured.
traceroute sends packets with an increasing TTL value, starting the TTL value at 1.
The first router (hop) receives the packet, then decrements the TTL value, resulting in the packet
getting dropped since the TTL has reached zero.
The router then sends an ICMP Time Exceeded back to the source.
This response indicates to the source the identity of the hop.
The source sends another packet, this time with TTL value 2.
The first router decrements it as usual, then sends it to the second router, which decrements to
zero and sends a Time Exceeded back.
This continues until the final destination is reached.

An example:

user@opsschool ~$ traceroute google.com
traceroute to google.com (173.194.123.39), 30 hops max, 60 byte packets
 1 (redacted) (redacted) 1.153 ms 1.114 ms 1.096 ms
 2 192.241.164.253 (192.241.164.253) 0.226 ms 192.241.164.241 (192.241.164.241) 3.267 ms 192.241.164.253 (192.241.164.253) 0.222 ms
 3 core1-0-2-0.lga.net.google.com (198.32.160.130) 0.291 ms 0.322 ms 192.241.164.250 (192.241.164.250) 0.201 ms
 4 core1-0-2-0.lga.net.google.com (198.32.160.130) 0.290 ms 216.239.50.108 (216.239.50.108) 0.980 ms 1.172 ms
 5 216.239.50.108 (216.239.50.108) 1.166 ms 209.85.240.113 (209.85.240.113) 1.143 ms 1.358 ms
 6 209.85.240.113 (209.85.240.113) 1.631 ms lga15s47-in-f7.1e100.net (173.194.123.39) 0.593 ms 0.554 ms

mtr

mtr is a program that combines the functionality of ping and traceroute into one utility.

user@opsschool ~$ mtr -r google.com
HOST: opsschool Loss% Snt Last Avg Best Wrst StDev
1. (redacted) 0.0% 10 0.3 0.4 0.3 0.5 0.1
2. 192.241.164.237 0.0% 10 0.3 0.4 0.3 0.4 0.0
3. core1-0-2-0.lga.net.google.c 0.0% 10 0.4 0.7 0.4 2.8 0.8
4. 209.85.248.178 0.0% 10 0.5 1.1 0.4 6.2 1.8
5. 72.14.239.245 0.0% 10 0.7 0.8 0.7 1.4 0.2
6. lga15s46-in-f5.1e100.net 0.0% 10 0.5 0.4 0.4 0.5 0.0

mtr can be run continuously or in report mode (-r).
The columns are self-explanatory, as they are the same columns seen when running traceroute
or ping independently.

Reading mtr reports can be a skill in itself, since there’s so much information packed into them.
There are many excellent in-depth guides to mtr that can be found online.

iftop

iftop displays bandwidth usage on a specific interface, broken down by remote host.
You can use filters to filter out data you don’t care about, such as DNS traffic.
iftop is not available in the base reposities for RHEL/CentOS or Ubuntu, but is available in
EPEL [https://fedoraproject.org/wiki/EPEL], and the Universe repository, respectively.

In this example, iftop is listening only to the eth0 interface, and for purposes of this document,
is also using the -t option, which disables the ncurses interface (for your use, you won’t need -t).
This box is a very low-traffic VM, so there’s not much here, but it does give a sense of what
information is available via the tool.

user@opsschool ~$ sudo iftop -i eth0 -t
interface: eth0
IP address is: 10.0.2.15
MAC address is: 08:00:27:ffffff8a:6d:07
Listening on eth0
 # Host name (port/service if enabled) last 2s last 10s last 40s cumulative
--
 1 10.0.2.15 => 804b 804b 804b 201B
 google-public-dns-a.google.com <= 980b 980b 980b 245B
 2 10.0.2.15 => 352b 352b 352b 88B
 10.0.2.2 <= 320b 320b 320b 80B
--
Total send rate: 1.13Kb 1.13Kb 1.13Kb
Total receive rate: 1.27Kb 1.27Kb 1.27Kb
Total send and receive rate: 2.40Kb 2.40Kb 2.40Kb
--
Peak rate (sent/received/total): 1.12Kb 1.27Kb 2.40Kb
Cumulative (sent/received/total): 289B 325B 614B
==

iperf

iperf is a bandwidth testing utility.
It consists of a daemon and client, running on separate machines.

This output shows from the client’s side:

user@opsschool ~$ sudo iperf3 -c remote-host
Connecting to host remote-host, port 5201
[4] local 10.0.2.15 port 45687 connected to x.x.x.x port 5201
[ID] Interval Transfer Bandwidth Retr Cwnd
[4] 0.00-1.00 sec 548 KBytes 4.48 Mbits/sec 0 21.4 KBytes
[4] 1.00-2.00 sec 503 KBytes 4.12 Mbits/sec 0 24.2 KBytes
[4] 2.00-3.00 sec 157 KBytes 1.28 Mbits/sec 0 14.3 KBytes
[4] 3.00-4.00 sec 0.00 Bytes 0.00 bits/sec 0 14.3 KBytes
[4] 4.00-5.00 sec 472 KBytes 3.88 Mbits/sec 0 20.0 KBytes
[4] 5.00-6.00 sec 701 KBytes 5.74 Mbits/sec 0 45.6 KBytes
[4] 6.00-7.00 sec 177 KBytes 1.45 Mbits/sec 0 14.3 KBytes
(snip)

Some of the really handy options:

-m - Use the maximum segment size (the largest amount of data, in bytes, that a system can support
in an unfragmented TCP segment).
This option will use the default size for the particular network media in use (eg, Ethernet is 1500 bytes).

-M - Set MSS, used in conjuction with the previous -m option to set the MSS to a different value than default.
Useful for testing performance at various MTU settings.

-u - Use UDP instead of TCP.
Since UDP is connectionless, this will give great information about jitter and packet loss.

tcpdump

For occasions where you need to get into the nitty-gritty and look at actual network behavior,
tcpdump is the go-to tool.
tcpdump will show raw connection details and packet contents.

Since one could devote entire pages to the usage of tcpdump, it is recommended to search online
for any one of the many great guides on tcpdump usage.

Troubleshooting layer 1 problems

Layer one problems (physical) deserve their own section, because of how cryptic
they can seem without a solid understanding of the causes and symptoms.
There are several data points that fall under layer one.

Most layer problems are usually traced back to one of the following causes:

	Bad cabling

	Mismatched duplex/speed

	Electromagnetic interference (EMI)

	Network congestion

To find the metrics below, use either ip -s link, or ethtool -S.

Example output of ip -s link show eth0:

user@opsschool ~$ ip -s link show eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
 link/ether 04:01:1c:dc:82:01 brd ff:ff:ff:ff:ff:ff
 RX: bytes packets errors dropped overrun mcast
 150285334 221431013 0 0 0 0
 TX: bytes packets errors dropped carrier collsns
 999121259 42410636 0 0 0 0

Here we can see that the link is up (state UP), the MAC address
(04:01:1c:dc:82:01), bytes, packets, errors, drops, overruns, multicast,
carrier, and collisions, for both RX (receive) and TX (transmit).

One thing you may notice is that overrun and mcast are only on RX, and
carrier/collisions are only on TX.
This is because overruns and multicast only affect the receiving side, while carrier
and collisions only affect the transmitting side.
The reason for this will be made clear when described below.

Example output of ethtool eth0:

user@opsschool ~$ sudo ethtool eth0
Settings for eth0:
 Supported ports: [TP]
 Supported link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Full
 Supported pause frame use: No
 Supports auto-negotiation: Yes
 Advertised link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Full
 Advertised pause frame use: No
 Advertised auto-negotiation: Yes
 Speed: 1000Mb/s
 Duplex: Full
 Port: Twisted Pair
 PHYAD: 0
 Transceiver: internal
 Auto-negotiation: on
 MDI-X: Unknown
 Supports Wake-on: umbg
 Wake-on: d
 Current message level: 0x00000007 (7)
 drv probe link
 Link detected: yes

As we can see, ethtool gives a lot of information, and with additional flags,
there’s even more.
ethtool is especially useful for looking into layer 1 configuration, due to
how much information it can provide.
A particularly useful option is -S, which shows all the same metrics as
the ip command mentioned above, plus many, many more:

user@opsschool ~$ sudo ethtool -S eth0
NIC statistics:
 rx_packets: 20831
 tx_packets: 11160
 rx_bytes: 14654723
 tx_bytes: 3637509
 rx_broadcast: 0
 tx_broadcast: 9
 rx_multicast: 0
 tx_multicast: 11
 rx_errors: 0
 tx_errors: 0
 tx_dropped: 0
 multicast: 0
 collisions: 0
 rx_length_errors: 0
 rx_over_errors: 0
 rx_crc_errors: 0
 rx_frame_errors: 0
 rx_no_buffer_count: 0
 rx_missed_errors: 0
 tx_aborted_errors: 0
 tx_carrier_errors: 0
 tx_fifo_errors: 0
 tx_heartbeat_errors: 0
 tx_window_errors: 0
 tx_abort_late_coll: 0
 tx_deferred_ok: 0
 tx_single_coll_ok: 0
 tx_multi_coll_ok: 0
 tx_timeout_count: 0
 tx_restart_queue: 0
 rx_long_length_errors: 0
 rx_short_length_errors: 0
 rx_align_errors: 0
 tx_tcp_seg_good: 304
 tx_tcp_seg_failed: 0
 rx_flow_control_xon: 0
 rx_flow_control_xoff: 0
 tx_flow_control_xon: 0
 tx_flow_control_xoff: 0
 rx_long_byte_count: 14654723
 rx_csum_offload_good: 0
 rx_csum_offload_errors: 0
 alloc_rx_buff_failed: 0
 tx_smbus: 0
 rx_smbus: 0
 dropped_smbus: 0

Common Network metrics

RX/TX errors

These counters appear to be aggregates of various other counters, and information
on exactly what’s included in them is sparse.
An increase of these counters is an indication that something is wrong, but
they’re too general to determine the exact cause.
If you see these increasing, it will be more beneficial to check ethtool -S
and see exactly which counters are increasing.

Cyclic Redundancy Check (CRC)

CRC is a sort of checksum.
CRC errors can be a symptom for many different issues, such as a bad cable,
noisy lines, and more.

Drops

Drops occur when the network link is simply too saturated.
The solution is to increase the bandwidth available, perhaps by upgrading the
network link, or implementing some form of traffic limitation such as
Quality-of-Service (QoS).
Traffic limitation/shaping is out of the scope of this section, and should be
considered an advanced topic.
You can verify the saturation by checking your graphs for RX/TX bytes and see how
much data is going through.

Overruns

Overruns occur when the network device is receiving data faster than the kernel
driver can process it.
Overruns sound similar to drops, but overruns have to do with the kernel’s ability
to process data, rather than the network link itself.
The solution is either to replace the network device with a more capable one, or
lower the amount of data coming in to the network device.

Carrier

Carrier errors occur when the link signal is having issues.
In the absence of collisions, this can usually be attributed to a bad cable
or network device.
If collisions are also increasing, check the duplex settings.

Collisions

Collisions occur when there is a duplex or speed mismatch.
Verify duplex and speed at both ends of the cable (at the switch and at the server).
Auto-negotiation being enabled on one end but not on the other is often a
cause of duplex/speed mismatch.
Some devices don’t play nicely with each other when auto-negotiation is
enabled on both sides, so be sure to verify what auto-negotiation resulted in.

Electromagnetic interference (EMI)

The symptoms of electromagnetic interference can be seen by an increase of CRC errors.
Electromagnetic interference can be caused by any number of things: power cables nearby,
mechanical systems (such as HVAC units), etc.
Since a visual inspection will often reveal electromagnetic interference culprits easier
than checking metrics, it’s simpler to do a visual inspection first if you suspect
this.
The problem can sometimes be solved/alleviated by replacing the cable with STP
(Shielded Twisted Pair), but it’s usually better to just relocate the network cable.
Only copper cabling is suspectible to EMI.
Fiber is immune to EMI, as signals are transmitted as light instead of current.

Testing copper cabling

A link tester is an inexpensive device made by many different vendors, for the
purpose of verifying that a cable’s functionality.
Link testers only verify a small amount of criteria, mainly that there are no
opens or shorts.
A link tester, however, is different from a cable certifier, which will verify
full compliance with TIA/EIA and ISO cable standards, including metrics for
crosstalk allowance, cable length, current loss, and many others.

If you need to test cable used in low-impact environments (e.g., wall jack to
desktop), a link tester is usually sufficient.
If you need to test cable used in high-impact environments (e.g., datacenter),
opt for a cable certifier.
Reputable cable vendors will have already run certification tests on cable,
so this is only useful if you are routinely making your own cable (which
is not advised under most circumstances).

Many vendors sell great testers, with Fluke Networks being one of the primary
vendors.

Fiber errors

Issues with fiber cable generally fall into two categories:

	Dirty/Scratched fiber

	Bad optic/transceiver

The symptoms for both are very similar: intermittent RX/TX and CRC errors
indicate a dirty or scratched fiber, while persistent RX/TX and CRC errors
indicate a bad optic/transceiver.

Differences in perspective: network engineering and systems administration

Network engineering and systems administration have a tendency to speak different languages,
due to the divide in skillsets and lack of overlap.

A good way to view how network engineering sees the technology differently is consider
the OSI model: network engineering is focused primarily on layers 1, 2, and 3, with the
occasional venture into the higher layers when certain routing protocols are involved (eg,
BGP peering sessions operate over TCP).
System administrators, on the other hand, are typically more concerned with layers 4 through 7,
with the occasional venture into layer 3 for IP addressing.
If one considers the perspective of the other, empathy is understanding comes easier, and
anticipating what the other side expects becomes straightforward.

As such, here are a few tips on how the two specializations see the same technology:

	Network engineers output in bits-per-second (bps), while many server-specific utilities
output in bytes-per-second (Bps).
As such, be sure when you’re sending throughput data to network engineering that it’s in
bits-per-second.
Your monitoring tools will usually do this for you (look for a config option).
In the occasion you need to do it by hand, and you’re working in bytes, simply multiply by eight
to get bits.
For more information on conversions, wikipedia [http://en.wikipedia.org/wiki/Data_rate_units]
has a good article on unit measurements.
Alternatively, use an online calculator.

	Systems administrators often don’t worry about network topology since it so often “just works”.
However, in some cases, especially situations where you’re troubleshooting hosts across the
open internet, you may run into something called an ‘asymmetrical path’, that is, the routing
is using a different path out than it does coming back in.
In such situations, one path might have issues, while the other path is perfectly fine.
For this reason, when sending issue reports to a network engineer, be sure to send
a traceroute/mtr report from both directions.
This situation is not common on internal networks, but can be on the open Internet.
You may also run into this situation when you have more complex routing set up on the local server.

	A simple ping sometimes isn’t enough for an issue report, for the simple reason that it contains
so little information.
A traceroute/mtr report is better.
If there’s suspected throughput issues, try to get an iperf report as well.
Also include an interface configuration report, showing MTU, IP address, and MAC address
of the relevant interface(s).

Common services

	System daemons 101
	NTP

	Kernel daemons

	Filesystem daemons

	udevd

	crond

	atd

	sshd

	DNS 101
	A Brief History of DNS

	Terminology
	Domain name

	Top-Level Domain

	Fully Qualified Domain Name (FQDN)

	IP address

	Zonefile

	Records

	How DNS works
	Root Servers

	TLD Servers

	Domain-level nameservers

	Resource types

	An example zonefile

	Host-specific DNS configuration
	/etc/hosts

	/etc/resolv.conf

	Caching

	TTLs

	Forward and reverse DNS

	Useful DNS tools
	Windows

	Unix

	DNS 201
	Architecture/design choices
	Master/slave

	Shadow master/slave

	Shadow master/multi=slave

	Split horizon

	DNSSEC

	DHCP
	Tools: ISC dhcpd

	Protocol

	dhcp helper

	Defining classes, leases

	Options
	Default gateway

	DNS server(s)

	HTTP 101 (Core protocol)
	Request

	Response
	Common response codes

	Tools: Speaking http with telnet/netcat/curl
	Telnet

	cURL

	netcat
	Basic client/server

	Serving HTTP

	Apache, nginx

	HTML

	Virtual hosting
	IP-based

	Name-based

	HTTP 201 (Application Servers & Frameworks)
	Java
	Tomcat

	JBoss

	Jetty

	node.js / Server-side Javascript

	Perl

	PHP

	Ruby
	Rails

	Sinatra

	Python
	Django

	Flask

	SMTP 101
	Tools: Speaking smtp with telnet/netcat

	Risks / Dangers / Open relays

	Protocol
	MX routing

	Envelope

	Message Headers

	Message Body

	MTAs (forwarding, smart hosts, etc.)
	Postfix

	Sendmail

	SMTP 201
	Anti=Spam
	Blacklisting

	Whitelisting

	Greylisting

	SpamAssassin?

	Reliable Mail Delivery

	Basic Etiquette

	Authentication (SPF, DKIM)

	Bounce Management

	Feedback Loops

	Reputation Management

	Advanced routing

	Hosted services = why they are good/bad/ugly

System daemons 101

NTP

Kernel daemons

klogd, etc

Filesystem daemons

xfslogd, etc

udevd

crond

atd

sshd

DNS 101

The Domain Name System is a very central part of how the Internet we use today works.
Before the introduction of DNS, networked computers were referenced solely by IP address.
After a while, this became confusing to remember and use on a daily name, thus DNS was born.

A Brief History of DNS

As the popularity of the Internet grew, and more networked computers came online, there was an increasing need to be able to reference remote machines in a less-confusing way than solely by IP address.
With a small enough network, referencing machines by IP address alone can work absolutely fine.
The addition of descriptive names, however, makes referencing machines much easier.

The first example of DNS was a HOSTS.TXT file created by staff running ARPANET [http://en.wikipedia.org/wiki/ARPANET].
ARPANET staff would amend this global HOSTS.TXT file on a regular basis, and it was distributed to anyone on the Internet who wanted to use it to reference machines by name rather than by number.
Eventually, as the Internet grew, it was realized that a more automated system for mapping descriptive names to IP addresses was needed.
To that end, HOSTS.TXT can be seen as the immediate forerunner to the Domain Name System we use today.

In 1983, Paul Mockapetris authored RFC 882 [https://tools.ietf.org/html/rfc882.html], which describes how a system mapping memorable names to unmemorable IP addresses could work.
A team of students at UC Berkeley [http://berkeley.edu] created the first implementation of Mockapetris’ ideas in 1984, naming their creation Berkeley Internet Name Domain (BIND) server.
Today, BIND is still the most widely-used nameserver software on the Internet with over 70% of domains using it, according to the ISC [http://isc.org/downloads/bind] and Don Moore’s survey [http://mydns.bboy.net/survey/].
Since then, a number of RFC documents have been published which have continued to improve how DNS works and runs.

Terminology

Domain name

A domain name is likely the way you interface with DNS most often when browsing the Internet.
Examples are, quite literally, everywhere - a very limited example set includes google.com and wikipedia.org.

Top-Level Domain

A top-level domain is an important, but rather generic, part of a domain name.
Examples include com, net, gov and org - they were originally defined in RFC 920 [https://tools.ietf.org/html/rfc920.html].
[ICANN](https://www.icann.org) controls the TLDs, and delegate responsibility for the registration and maintenance of specific domains to registrars.

Fully Qualified Domain Name (FQDN)

A fully-qualified domain name is equivalent to the absolute name.
An absolute is one in which the full location of an item is specified.
For instance, in HTML, we might use Google to link to Google.
But we might use Page to link to a specific page relatively.
The difference here is that relative names are relative to the current location.
Domain names can also be relative to one another and therefore have a tendency to become ambiguous at times.
Specifying an FQDN relative to the root ensures that you have specified exactly which domain you are interested in.
Examples of FQDNs include www.google.com. and www.gov.uk..

IP address

An IP address is used to uniquely address a machine on a network in numerical (IPv4) or alphanumerical (IPv6) form.
It is important that we understand the concept of “network” used here to be relative to what we are trying to achieve.
For instance, trying to contact another computer inside your home or office network means that the IP address of the machine you are trying to reach must be unique within your home or office.
In terms of websites and publicly-accessible information available via the Internet, the “network” is - in fact - the Internet.

There are two types of IP addresses: one is becoming increasingly popular as we get close to running out of available IPv4 addresses.

An IPv4 address referenced everything in four sets of three period-separated digits.
For instance, 8.8.8.8 and 102.92.190.91 are examples of IPv4 addresses.
As more devices and people across the world come online, the demand for IPv4 addresses hit a peak, and ICANN are now very close to running out of available addresses.
This is where IPv6 comes in.

IPv6 follows similar principles to IPv4 - it allows for machines to be uniquely referenced on the network on which they reside, but the addressing syntax incorporates alphanumeric characters to increase the number of available addresses by a significant base.
They are written as 2001:0db8:85a3:0042:1000:8a2e:0370:7334, although short-hand notations do exist (for instance, ::1 to refer to the local machine at any time).

Zonefile

A zonefile is simply a text file made of a variety of different records for an individual domain.
Each line of a zonefile contains the name of a particular domain, and then the value and type associated with it.
For instance, in google.com’s zonefile, there may exist a line which denotes www translates, via an A record, to 173.194.34.68.

Records

A DNS record is a single mapping between a domain and relevant data - for instance, an IP address in the case of an A record, or a mail server’s domain name, in the case of an MX record.
Many records make up a zonefile.

How DNS works

Root Servers

At the very top of the DNS tree are root servers.
These are controlled by the Internet Corporation for Assigned Names and Numbers [https://icann.org].
As of writing, there are thirteen unique root servers - however, an interesting caveat applies in that each of these root servers is actually a pool of root servers, acting in a load-balanced fashion in order to deal with the huge number of requests they get from the billions of Internet users daily.
Their purpose is to handle requests for information about Top-Level Domains, such as .com and .net, where lower level nameservers cannot handle the request sufficiently.
The root servers don’t hold any records of real use, insofar as they cannot respond with an answer to a query on their own. Instead, they respond to the request with details of which nameserver is best advised to proceed further.

For example, let’s assume that a request for www.google.com came straight in to a root server.
The root server would look at its records for www.google.com, but won’t be able to find it.
The best it will be able to produce is a partial match for .com.
It sends this information back in a response to the original request.

TLD Servers

Once the request for www.google.com has been replied to, the requesting machine will instead ask the nameserver it received in reply to the original request to the root server where www.google.com is.
At this stage, it knows that this server handles .com, so at least it is able to get some way further in mapping the address to an IP address.
The TLD server will try to find www.google.com in its records, but it will only be able to reply with details about google.com.

Domain-level nameservers

By this stage, the original request for www.google.com has been responded to twice: once by the root server to tell it that it doesn’t handle any records, but knows where .com is handled, and once by the TLD server which says that it handles .com, and knows where google is.
We’ve still got one more stage to get to, though - that’s the www stage.
For this, the request is played against the server responsible for google.com, which duly looks up www.google.com in its records and responds with an IP address (or more, depending on the configuration).

We’ve finally got to the end of a full request!
In reality, DNS queries take place in seconds, and there are measures in place which we’ll come on to in these DNS chapters about how DNS can be made faster.

Resource types

Whilst at it’s most basic, DNS is responsible for mapping easily-remembered domain names to IP addresses, it is also used as a form of key/value database for the Internet.
DNS can hold details on which mail servers are responsible for a domain’s mail and arbitrary human-readable text which is best placed in DNS for whatever reason.

The most common types you’ll see are:

	Record Type

	Description

	A

	Responsible for mapping
individual hosts to an IP
address. For instance,
www in the google.
com syntax.

	AAAA

	The IPv6 equivalent of an
A record (see above)

	CNAME

	Canonical name. Used to
alias one record to
another. For example,
foo.example.com
could be aliased to bar.
example.com.

	MX

	Specifies mail servers
responsible for handling
mail for the domain.
A priority is also
assigned to denote an
order of responsibility.

	PTR

	Resolves an IP address to
an FQDN. In practice, this
is the reverse of an A
record.

	SOA

	Specifies authoritative
details about a zonefile,
including the zonemaster’s
email address, the serial
number (for revision
purposes) and primary
nameserver.

	SRV

	A semi-generic record used
to specify a location.
Used by newer services
instead of creating
protocol-specific records
such as MX.

	TXT

	Arbitrary human-readable
information that needs to
be stored in DNS. Examples
include verification codes
and SPF records.

There’s a good in-depth list of every record type, the description of its use and the related RFC in which it is defined in this Wikipedia article [http://en.wikipedia.org/wiki/List_of_DNS_record_types].

An example zonefile

$TTL 86400; // specified in seconds, but could be 24h or 1d
$ORIGIN example.com

@ 1D IN SOA ns1.example.com. hostmaster.example.com. (
 123456 ; // serial
 3H ; // refresh
 15 ; // retry
 1w ; // example
 3h ; // minimum
)

 IN NS ns1.example.com
 IN NS ns2.example.com // Good practice to specify multiple nameservers for fault-tolerance
 IN NS ns1.foo.com // Using external nameservers for fault-tolerance is even better
 IN NS ns1.bar.com // And multiple external nameservers is better still!

 IN MX 10 mail.example.com // Here, 10 is the highest priority mail server, so is the first to be used
 IN MX 20 mail.foo.com // If the highest priority mail server is unavailable, fall back to this one

ns1 IN A 1.2.3.4
ns1 IN AAAA 1234:5678:a1234::12 // A and AAAA records can co-exist happily. Useful for supporting early IPv6 adopters.
ns2 IN A 5.6.7.8
ns2 IN A 1234:5678:a1234::89
mail IN A 1.3.5.7
www IN A 2.4.6.8
sip IN CNAME www.example.com.
ftp IN CNAME www.example.com.
mail IN TXT "v=spf1 a -all"

_sip._tcp.example.com. IN SRV 0 5 5060 sip.example.com.

Host-specific DNS configuration

If you are administering systems, specifically Unix systems, you should be aware of two pieces of host-side configuration which allow your machines to interface with DNS:

	/etc/hosts

	/etc/resolv.conf

/etc/hosts

The /etc/hosts file has the purpose of acting as a local alternative to DNS.
You might use this when you want to override the record in place in DNS on a particular machine only, without impacting that record and its use for others - therefore, DNS can be overridden using /etc/hosts.
Alternatively, it can be used as a back-up to DNS: if you specify the hosts that are mission-critical in your infrastructure inside /etc/hosts, then they can still be addressed by name even if the nameserver(s) holding your zonefile are down.

However, /etc/hosts is not a replacement for DNS - in fact, it is far from it: DNS has a much richer set of records that it can hold, whereas /etc/hosts can only hold the equivalent of A records.
An /etc/hosts file might, therefore, look like:

127.0.0.1 localhost
255.255.255.255 broadcasthost
::1 localhost
fe80::1%lo0 localhost

192.168.2.2 sql01
192.168.2.3 sql02
192.168.1.10 puppetmaster puppet pm01

The first four lines of /etc/hosts are created automatically on a Unix machine and are used at boot: they shouldn’t be changed unless you really know what you’re doing!
In fact, the last two lines of this section are the IPv6 equivalents of the first line.
After these first four lines, though, we can specify a name and map it an IP address.
In the above example, we’ve mapped sql01 to 192.168.2.2, which means that on a host with the above /etc/hosts configuration, we could refer to sql01 alone and get to the machine responding as 192.168.2.2.
You’ll see a similar example for sql02, too. However, there is a slightly odd example for the box named puppetmaster in that multiple friendly names exist for the one box living at 10.0.0.2.
When referenced in this way - with multiple space-separated names against each IP address - the box at 10.0.0.2 can be reached at any of the specified names.
In effect, puppetmaster, puppet, and pm01 are all valid ways to address 10.0.0.2.

/etc/resolv.conf

/etc/resolv.conf exists on Unix machines to allow system administrators to set the nameservers which the machine should use.
A DNS domain can also be referenced in this file, too.
An example /etc/resolv.conf might look like:

domain opsschool
nameserver 192.168.1.1
nameserver 192.168.1.2
nameserver 192.168.1.3

In this example, we would be specifying that any of 192.168.1.1, 192.168.1.2 and 192.168.1.3 can be used by the host with the above configuration to query DNS.
We are actually telling the host that it is allowed to use any of the nameservers in this file when it resolves (i.e.: makes a request for an entry and waits for a response) a host in DNS.

Setting the domain directive - as in the above example, where we specified it as opsschool - allows users to specify hosts by address relative the domain.
For instance, a user could reference sql01, and a query would be sent to nameservers specified asking for records for both sql01 and sql01.home.
In most cases, the responses should match - just be careful if they don’t, as you’ll end up with some very confused machines when DNS has split-brained like this!

Caching

By itself, DNS doesn’t scale very well.
Imagine having a machine that needed to make many millions of DNS queries per day in order to perform its function - it would need to perform well and be constantly available.
In order to cut the cost of hardware somewhat, to reduce pressure on networks, and to speed up receiving responses to common queries, many client machines will cache DNS records.
The SOA record at the start of each zonefile on the nameservers specifies an expiry value, which tells clients for how long they can keep the zonefile in its current state before they must re-request it.
This rather crude but effective updating method works well in the case of DNS.

Generally speaking, caching of DNS records (at least on Unix-based machines) is managed by individual applications.
In a Windows environment, however, it is more centralised.
To that end, whilst you cannot easily view the cache as it exists on an individual machine all in one place in Unix, you can using Windows - the ipconfig /displaydns command will print the cache as it stands.
In Windows, you’ll be presented with the record name as a number - this is a binary representation of the record type itself.
Conversion charts can be found online, for example at Wikipedia [http://en.wikipedia.org/wiki/List_of_DNS_record_types].

Caching links directly to a phenomenon called propagation.
Propagation is the process by which records that have previously existed and have been updated begin to get updated in other machines’ caches.
If the SOA record for a zonefile tells hosts to check back with the DNS server every 24 hours, then it should take - at most - 24 hours for machines to update their caches with the new record.

TTLs

TTLs, or ‘time to live’ values, are a useful feature in DNS which allows you to force the expiry of individual records, thus bypassing the expiry time referenced in the SOA record on a per-record basis.
For instance, let’s say that opsschool.org has moved to a new web host but it needs to ensure that the service is available as much as possible.
By reducing the TTL for the www and * records in the opsschool.org zonefile, the switch between previous and new vendor should be relatively pain-free.
TTLs and caching (see above) work well together - with a suitably high TTL and suitable caching in place, the time for a request to be responded to and the time for updated records to exist on caches are both dramatically reduced.

Forward and reverse DNS

By this point, we’ve covered many of the basic concepts of DNS - we’ve looked at what exactly DNS is, how the DNS tree works (in the forms of nameserver hierarchies and record types), and we’ve looked at host-side configuration using /etc/resolv.conf and /etc/hosts. There is, however, one further concept we need to cover: forward and reverse DNS.

Forward DNS is, in essence, simply DNS as described above.
When ftp.example.com is requested, the root nameserver will reply with details of the nameserver responsible for .com, which will reply with the address of the nameserer responsible for example.com, which will then look in the example.com zonefile for the ftp record and reply appropriately.
In fact, the terms ‘forward DNS’ and ‘DNS’ are pretty interchangeable: when talking about DNS, if you don’t otherwise specify, most ops engineers will assume you’re talking about forward DNS as it’s the most often used direction.

However, whilst forward DNS is the type you’re likely to run in to most often, it’s also very important to know how reverse DNS works.
If forward DNS maps hostnames to IP addresses, then reverse DNS does exactly the opposite: it maps IP addresses to hostnames.
To do this, the zonefile in question must have a PTR record set for the record you’re interested in.
Getting used to PTR records and reverse DNS can be tricky, so it might take a few attempts until it catches on.

Domain names follow a specific syntax - foo.tld, where .tld is set by ICANN and chosen by the registrant when they register their domain.
For instance, people can choose to register .aero, .com and .tv domains wherever they live in the world, subject to a fee.
With reverse DNS, a similar syntax exists.
Let’s assume that we want to know which hostname responds at 22.33.44.55.
We do this as follows:

	Reverse the octets of the IP address - 22.33.44.55 becomes 55.44.33.22, for instance

	Add in-addr.arpa to the end of the reversed address - we now have 55.44.33.22.in-addr.arpa

	The root nameserver tells queries to find the arpa nameserver

	The arpa nameserver directs the query to in-addr.arpa’s nameserver

	The in-addr.arpa nameserver then responds with details of 22.in-addr.arpa, and so on…

	In the zonefile, the IP address matching the query is then found and the relevant hostname is returned

Useful DNS tools

There are a number of very useful tools for querying DNS.
A list of the most common and some example commands can be found below - for further instructions, see each tool’s man page (found, in Unix, by typing man $toolname at a prompt, and in Windows by appending -h to the command.

Windows

ipconfig is a useful tool for diagnosing and configuring TCP/IP networks.
Among its many switches, it allows the use of /displaydns which will dump the output of the DNS cache to the console for you.
You can then use the /flushdns entry to clear your DNS cache on a Windows machine.

nslookup, however, might be more useful in your day-to-day use of DNS.
It allows you to look up an entry on any nameserver that you know the public IP address or hostname for.
In many respects, therefore, it acts much like dig on Unix systems does.

Unix

dig can be used to query a nameserver to see what values it holds for a specific record.
For instance, you could run dig opsschool.org will produce the entire query and entire response, which whilst useful, is often not the information you are looking for.
Running the same command, but specifying the +short switch just provides you with relevant detail - in the case of looking up an IP address for a hostname by way of A record, then the output from dig will just be the relevant IP address.
Dig can also be used to query external nameservers, such as 8.8.8.8, to see what values they hold.

For instance, dig can be invoked as follows:

	dig opsschool.org a for a verbose output listing only the A record for opsschool.org

	dig opsschool.org a +short for a much shorter, more concise version of the last command

	dig @8.8.8.8 opsschool.org a +short to repeat the same command as above, but against Google’s 8.8.8.8 nameserver

In place of dig, you may also see host used in its place.
Essentially, both tools perform approximately the same action - given a DNS server (or not, as not doing queries the one you have specified in /etc/resolv.conf), host also allows you to query a record and its value.

For further details on the usage of each tool, have a look at the relevant manual pages - type man dig and man host to find the man pages on any Unix system.
You might choose to stick with one tool, or get used to both.

DNS 201

Architecture/design choices

Master/slave

Shadow master/slave

Shadow master/multi=slave

Split horizon

DNSSEC

DHCP

DHCP, or, Dynamic Host Control Protocol is a standard that allows one central
source, i.e. a server or router, to automatically assign requesting hosts an IP
address.

The most common DHCP servers on Linux platforms are the ISC’s
(Internet System Consortium) dhcpd, and dnsmasq. On Windows platforms
there are a variety of DHCP servers, though the Microsoft DHCP server is
arguably the best in terms of support and integration.

Tools: ISC dhcpd

dhcpd is the most common DHCP server, and it offers excellent integration
with BIND (DNS server).

Protocol

dhcp helper

DHCP helpers are sometimes referred to as DHCP relayers. The basic idea is that
a relay agent will forward DHCP requests to the appropriate server. This is
necessary because a host that comes online on a subnet with no DHCP server
has no way of finding the correct server; it needs a DHCP assigned address to
find a route to the correct DHCP server, but can’t get there because it has no
IP address! DHCP relaying solves this chicken and egg problem by acting as an
intermediary. See this wikipedia 1 article for more details.

Defining classes, leases

Options

Default gateway

DNS server(s)

(Tie in previous chapters re: TFTP, PXE with related options?)

	1

	DHCP relaying explained [http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#DHCP_relaying]

HTTP 101 (Core protocol)

HTTP is a response-request protocol in the application layer of the OSI model.
An HTTP server listens for an incoming client request on a socket bound to an address and a port.
The address can either be a specific address configured on the host, or a wildcard to accept connection on all IP addresses configured on the host.
By default the port is 80, but this is not required.

Request

Once the TCP connection is made (OSI layer 4), the client initiates HTTP communication by sending an HTTP request on the established connection.
The HTTP request includes a request line, which is composed of a method, URI and protocol version.
A request method defines the action to be executed on the target resource, which on its turn is identified by the URI.
The protocol field indicates the version of HTTP to be used.

GET /index.html HTTP/1.1
Host: example.com

The request line is followed by headers containing client information and other metadata.
As per protocol specification, the client must include the Host header in the HTTP request.
A single server may serve several (virtual) hosts, so the Host header signals the server to which of the possible hosts to route the request.
Some implementations might interpret a request without Host header as invalid, and respond with the 400 Bad Request message.
An empty line indicates the end of the request line and header section.

The available methods are :

	Method

	Description

	GET

	Tranfers a current representation of the target resource.

	HEAD

	Same as GET, but only transfer the status line and header section.

	POST

	Perform resource-specific processing on the request payload.

	PUT

	Replace all current representations of the target resource with the requested payload.

	DELETE

	Remove all current representations of the target resource.

	CONNECT

	Establish a tunnel to the server identified by the target resource.

	OPTIONS

	Describe the communication options for the target resource.

	TRACE

	Perform a message loop-back test along the path to the target resource.

(source: RFC 7231 [https://tools.ietf.org/html/rfc7231.html])

After the empty line, an optional message body in the request contains the payload (data) associated with the request.

Response

The server parses the request, and, depending on the validity of the request, sends one or more responses.
An HTTP response starts with the status line, which contains the protocol version, success or error code, and a reason message.

The status line is mostly followed by a header section containing server information and other metadata.
An empty line indicates the end of the status line and header.
The final part of the response, the message body, contains the payload sent back to the client.

HTTP/1.1 200 OK
Date: Wed, 20 May 2015 19:45:37 GMT
Server: Apache/2.2.22 (Debian)
Last-Modified: Tue, 19 May 2015 14:25:26 GMT
ETag: "9dac8-2d-5178e2f1c2e8b"
Accept-Ranges: bytes
Content-Length: 45
Vary: Accept-Encoding
Content-Type: text/html

<html><body><h1>It works!</h1></body></html>

Common response codes

	Code

	Reason

	Description

	200

	OK

	The request has succeeded.

	301

	Moved Permenantly

	The target has moved to a new location and future references should use a new location. The server should mention the new location in the Location header in the response.

	302

	Found

	The target resources been temporarily moved. As the move is temporarily, future references should still use the same location.

	400

	Bad Request

	The server cannot process the request as it is perceived as invalid.

	401

	Unauthorized

	The request to the target resource is not allowed due to missing or incorrect authentication credentials.

	403

	Forbidden

	The request to the target resource is not allowed for reasons unrelated to authentication.

	404

	Not Found

	The target resource was not found.

	500

	Internal Server Error

	The server encountered an unexpected error.

	502

	Bad Gateway

	The server is acting as a gateway/proxy and received an invalid response from a server it contacted to fulfill the request.

	503

	Service Unavailable

	The server is currently unable to fulfill the request.

Tools: Speaking http with telnet/netcat/curl

Telnet

The telnet utility is used for interactive communication to a host on a given port.
Once the connection to the remote host is established, an HTTP request can be send to the host by typing it in the prompt:

$ telnet www.opsschool.org 80
GET /en/latest/http_101.html HTTP/1.1
Host: www.opsschool.org

Trying 162.209.114.75...
Connected to ops-school.readthedocs.org.
Escape character is '^]'.
HTTP/1.1 200 OK
Server: nginx/1.4.6 (Ubuntu)
Date: Tue, 23 Jun 2015 20:41:10 GMT
Content-Type: text/html
Content-Length: 140673
Last-Modified: Wed, 27 May 2015 12:16:25 GMT
Connection: keep-alive
Vary: Accept-Encoding
ETag: "5565b599-22581"
X-Served: Nginx
X-Subdomain-TryFiles: True
X-Deity: chimera-lts
Accept-Ranges: bytes

<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>HTTP 101 (Core protocol) — Ops School Curriculum 0.1 documentation</title>

 (...)

 </body>
</html>

If the requested resource is found on the specified host, it is returned in the body of the response.

cURL

cURL is a tool and library for transferring data with URL syntax, capable of handling various protocols.
In contrast to telnet, cURL is able to create the HTTP request (or other known protocols) based on the given input.
It is a command line tool, and can be used in scripts to automate HTTP communication.

In its simplest form, cURL sends a GET request to the given target

$ curl http://www.opsschool.org/en/latest/http_101.html

<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>HTTP 101 (Core protocol) — Ops School Curriculum 0.1 documentation</title>

 (...)

</body>
</html>

With the --request or -X parameter, the method can be specified.
To include the headers in the output, the -i can be used, and to only output the headers, use the -I switch.

$ curl -I --request GET http://www.opsschool.org/en/latest/http_101.html
HTTP/1.1 200 OK
Server: nginx/1.4.6 (Ubuntu)
Date: Tue, 23 Jun 2015 20:42:25 GMT
Content-Type: text/html
Content-Length: 140673
Last-Modified: Wed, 27 May 2015 12:16:25 GMT
Connection: keep-alive
Vary: Accept-Encoding
ETag: "5565b599-22581"
X-Served: Nginx
X-Subdomain-TryFiles: True
X-Deity: chimera-lts
Accept-Ranges: bytes

cURL outputs a progress meter to the terminal, showing statistics about the operation.
However, once cURL is about to write data to the terminal, the display of the progress meter is disabled so it may seem as if it was never present.
The progress meter can still be seen when the output is written -o <file> or piped > to a file.

In case the download takes some time (for example downloading a big file) the progress meter can still be seen in the terminal.
The -O switch makes cURL write output to a local file named like the remote file.

$ curl -O http://localhost/bigfile
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 100M 100 100M 0 0 400M 0 --:--:-- --:--:-- --:--:-- 414M

When starting to download a large file with -C option, the download can be resumed in case of an interrupt.

cURL can use a proxy to retrieve a resource when specified to do so using the -x or --proxy option with the proxy specified as [protocol://][user:password@]proxyhost[:port].

By default cURL does not follow HTTP redirects, and instead a 3xx redirection message is given.
When browsing www.opsschool.org with cURL, the 302 response code indicates that the requested page is temporarily residing on a different location.
The Location header contains a reference to the new location:

$ curl -I www.opsschool.org
HTTP/1.1 302 FOUND
Server: nginx/1.4.6 (Ubuntu)
X-Deity: chimera-lts
X-Served: Flask
Content-Type: text/html; charset=utf-8
Date: Tue, 23 Jun 2015 21:04:01 GMT
Location: http://www.opsschool.org/en/latest/
X-Redirct-From: Flask
Connection: keep-alive
Content-Length: 229

The -L switch makes cURL automatically follow redirects and issue another request to the given location till it finds the targeted resource.

$ curl -IL www.opsschool.org
HTTP/1.1 302 FOUND
Server: nginx/1.4.6 (Ubuntu)
X-Deity: chimera-lts
X-Served: Flask
Content-Type: text/html; charset=utf-8
Date: Tue, 23 Jun 2015 21:06:22 GMT
Location: http://www.opsschool.org/en/latest/
X-Redirct-From: Flask
Connection: keep-alive
Content-Length: 229

HTTP/1.1 200 OK
Server: nginx/1.4.6 (Ubuntu)
Date: Tue, 23 Jun 2015 21:06:22 GMT
Content-Type: text/html
Content-Length: 195536
Last-Modified: Wed, 27 May 2015 12:16:27 GMT
Connection: keep-alive
Vary: Accept-Encoding
ETag: "5565b59b-2fbd0"
X-Served: Nginx
X-Subdomain-TryFiles: True
X-Deity: chimera-lts
Accept-Ranges: bytes

netcat

Netcat is a networking tool capable of reading and writing data across a network connection.
This makes it possible to use netcat both as a client and as server.
On many systems, netcat is started with the nc command instead of the program’s full name.

Basic client/server

To make a basic client-server connection, netcat can be told to listen on a port using the -l option:

$ nc -l 192.168.0.1 1234 > output.log

In above example, IP address is specified, but this is not required.
When started without IP specified, netcat will be listening on 0.0.0.0:1234.
Any output is written to file output.log.

Then in another terminal, pipe some data to netcat that is connected to the destination IP and port.

$ echo "I'm connected as client" | nc 192.168.0.1 1234

Then again in the first (server) terminal, the data is displayed:

$ cat output.log
I'm connected as client

Beyond sending simple pieces of text, netcat can be used to copy files and directory structures.

Serving HTTP

Netcat can be instructed to execute a program and redirect file descriptors when a connection is established.
If compiled with DGAPING_SECURITY_HOLE option, netcat has the -e <program> option to specify which program to ‘bind’ to a connection.
Even when the -e option is not available, a basic HTTP server can be created by redirecting file descriptors to our program.

Consider the following Bash script which implements a simple HTTP server:

#!/usr/bin/env bash

base_uri='/tmp'

respond(){
 [-d "${base_uri}/${uri}"] && uri+=/index.html
 if [-f "${base_uri}/${uri}"]
 then
 printf '%s\r\n'\
 "HTTP/1.1 200 OK"\
 "Date: $(date '+%a,%e %b %H:%M:%S GMT')"\
 "Server: myserver"\
 "Content-Length: $(stat -c'%s' ${base_uri}${uri})"\
 "" | tee >(cat - >&2);
 cat <"${base_uri}/${uri}" | tee >(cat - >&2);
 else
 printf '%s\r\n'\
 "HTTP/1.1 404 Not Found"\
 "Date: $(date '+%a,%e %b %H:%M:%S GMT')"\
 "Server: myserver"\
 "Content-Length: 30"\
 ""\
 "<html>Not Found</html>" | tee >(cat - >&2);
 fi
 unset request method uri version
 exit 0
}

MAIN

read -r request
read -r method uri version <<<"$request"
[-n "$method"] && [-n "$uri"] && [-n "$version"] || echo "HTTP/1.1 400 Bad Request"
echo $request >&2
while read -r header
do
 header=${header%%$'\r'}
 echo $header >&2
 [-z "$header"] && { respond; break; }
done

Stdout output acts as the response to the client.
Output to file descriptor 2 (>&2) is written to the server terminal.
This only covers reprentation of a web page, or an error page in case of a missing file.

To launch this with netcat compiled with DGAPING_SECURITY_HOLE option:

$ while true; do netcat -lp 1234 -e ./httpd.sh; done

Or when -e is not available:

$ mkfifo /tmp/httpipe
$ while true; do cat /tmp/httpipe | ./httpd.sh | nc -l 192.168.0.1 1234 > /tmp/httpipe ; done

This creates a pipe that we use to redirect data to and from the httpd script.
Now we can test it with either of the above shown tools:

$ curl 192.168.0.1:1234/
<html>Hello there world!</html>

$ nc 192.168.0.1 1234
GET /notexisting.html HTTP/1.1

HTTP/1.1 404 Not Found
Date: Tue, 9 Jun 18:39:59 GMT
Server: myserver
Content-Length: 30

<html>Not Found</html>

$ telnet 192.168.0.1 1234
Trying 192.168.0.1...
Connected to 192.168.0.1.
Escape character is '^]'.
GET /index.html HTTP/1.1

HTTP/1.1 200 OK
Date: Tue, 9 Jun 18:44:53 GMT
Server: myserver
Content-Length: 32

<html>Hello there world!</html>
Connection closed by foreign host.

Apache, nginx

Apache and Nginx are the two most used open-source webservers on the internet.
Though they share several features, their architectures differ significantly.

Apache relies on a process-based model, either with a single or multiple threads per process that handle a connection, whereas Nginx operates event-driven with multiple single-threaded processes that all handle connections asynchronously.
Nginx’ event-driven approach requires less resources, making it faster, especially for static content.
For dynamic content however, Nginx needs to proxy requests to an external processor for execution as it has no programming language support.
Therefore Nginx is often used as a front-end/proxy server in combination with other application servers, possibly Apache.

Both web servers are extensible with modules (security, compression, proxy, …).
Where Apache is able to dynamically load and enable modules at runtime, Nginx can only load modules that have been precompiled into the executable.

HTML

HyperText Markup Language is the markup language used to create web pages.
An HTML page is made up of a tree of elements and text.
Elements are identified by tags that are enclosed by angle brackets.
The root element is the <html> which on its turn contains the <head> element with information about the document, and <body> elements with the visible content of the page.

HTML pages can reference to other pages by using hyperlinks identified by <a> tags.
The developers of HTML, W3C, have the full specification on their website: http://www.w3.org/html/.

Virtual hosting

Virtual hosting is a technique where mutiple websites are hosted on a single web server.
The server’s resources are shared amongst all configured hosts, but each host has its own IP address or domain name.
There are two mechanisms for implementing virtual hosts:

IP-based

In IP-based virtual hosting each virtual host is configured with its own dedicated IP address.
The web server is configured to serve multiple IP addresses, either on multiple physical network interfaces or on virtualized interfaces on a single physical interface.
Based on the IP on which a client connects, the web servers determines which of the configured virtual hosts to serve to the client.

Name-based

In name-based virtual hosting a web server serves multiple host names on a single IP address.
While a client is connecting to a webserver, the destination address is resolved to an IP address either by DNS or local lookup table.
As several virtual hosts may be hosted on the same IP, the client needs to state which website it is requesting for by setting the Host header.
The web server inspects the Host header field in the HTTP request (mandatory as of HTTP/1.1) and routes the request to the correct virtual host.

HTTP 201 (Application Servers & Frameworks)

Java

Tomcat

JBoss

Jetty

node.js / Server-side Javascript

Perl

PHP

Ruby

Rails

Sinatra

Python

Django

Flask

SMTP 101

Tools: Speaking smtp with telnet/netcat

Risks / Dangers / Open relays

Tools to test/confirm operation as an open relay

Protocol

MX routing

Envelope

Message Headers

Message Body

MTAs (forwarding, smart hosts, etc.)

Postfix

Sendmail

SMTP 201

Anti=Spam

Blacklisting

Whitelisting

Greylisting

SpamAssassin?

Reliable Mail Delivery

Basic Etiquette

Authentication (SPF, DKIM)

Bounce Management

Feedback Loops

Reputation Management

Advanced routing

Hosted services = why they are good/bad/ugly

Identity Management 101

LDAP

LDAP (Lightweight Directory Access Protocol) is an application protocol used for
accessing and maintaining directory services. Directory Services uses a
database-styled system to correlate information about objects in that directory
with metadata about that object.

Directory services provide information about a unique ID, in much the same way
that an ISBN number identifies a book in a library. That unique ID can be a
user, a computer, or a group, or any number of other objects, depending on how
the directory index (or schema, as it is referred to) has been specified.

The metadata for that object can include things such as a Display Name, Address,
Date Created, Date Modified, Home Directory, etc… Since LDAP can be extended
by modifying or adding to the schema, it is a very flexible format and serves as
the base of most modern directory services.

Active Directory

Active Directory is Microsoft’s implementation of LDAP, coupled with Kerberos [http://en.wikipedia.org/wiki/Kerberos_(protocol)]
encrypted authentication
security. One benefit of Active Directory is Group Policy [http://en.wikipedia.org/wiki/Group_Policy], which is a flexible and
granular system for controlling a great many user and computer settings based on
flexible criteria, such as Organizational Unit or Group membership.

Active Directory Domain Services Port Requirements [http://technet.microsoft.com/en-us/library/dd772723(v=ws.10).aspx] can be found
on Technet.

Active Directory works best with Windows Domain Controllers serving as both DHCP
and DNS servers, in an AD-integrated DNS zone. While DNS or DHCP can be handled
by alternative systems such as BIND, this is an advanced configuration, and
should not be attempted in most scenarios.

The Active Directory schema has been modified with each release of Windows
Server, and will often be modified when deploying core Microsoft server
applications such as Exchange or Certificate Services. The overall state of the
domain is referred to as the Domain Functional Level [http://support.microsoft.com/kb/322692] - this may require consideration
when determining requirements of a project or feature implementation.

Active Directory is typically managed through a variety of tools, including:

GUI Tools

	Active Directory Users & Computers (to manage the users, computers,
and groups in a domain)

	Active Directory Sites & Services (to manage the
replication of AD to different sites/servers)

	adsiedit (a useful tool for viewing the attributes of objects within the domain)

Command Line Tools

	Powershell - through the Active Directory cmdlets

	ldp - an extremely low-level tool for interacting with LDAP directly, not
recommended for most uses

OpenLDAP

Directory389

NIS

Active Directory 101

What is Active Directory?

Active Directory is a Directory Service created by Microsoft. It
is included in Windows Server operating systems since Windows 2000
Server, which was launched in 2000.

Almost all Active Directory installations actually include several
separate but related components; although the term “Active Directory”
technically refers only to the directory service, in general use it
refers to the entire constellation of parts.

What is Active Directory used for?

Active Directory is primarily used to store directory objects (like
users and groups) and their attributes and relationships to one
another. These objects are most commonly used to control access to
various resources; for instance, an Active Directory might contain a
group which grants its members permission to log into a certain
server, or to print to a specific printer, or even to perform
administrative tasks on the directory itself.

Active Directory also provides a useful configuration management
service called Group Policy, which can be used to manage computers
which connect to the domain in order to install packages, configure
software, and much more.

You mention “separate components”; what is Active Directory composed of?

Most Active Directory installations have a few distinct parts which
all work together:

	a directory database which stores the actual directory information

	a Kerberos key distribution center which helps manage user
passwords and other security resources

	a DNS server, which maps IP addresses to hostnames and back

	a DHCP server, which grants dynamic IP addresses to hosts as they
join the network

	one or more Global Catalogs, which cache parts of the directory
database and help speed up some common queries

Also, Active Directory is designed in such a way that it can be run on
multiple computers at the same time, which coordinate between
themselves to ensure that their data is always consistent; this
process is called “replication”.

What specific services does Active Directory provide?

Group Policy

DNS

Kerberos Key Distribution Center

DHCP

Best Practices for managing an Active Directory installation

Cleaning up Unneeded Objects

Making Backups

Replication Health

Active Directory 201

Detailed Breakdown of Active Directory Components/Services

NTDS, the database

Kerberos KDC

DNS

DHCP

Global Catalog

The Global Catalog (GC) holds a subset of attributes for all objects in a multi-domain forest.
It can be used to search all objects in the forest.
For example, when searching for the a specific user, the GC can be searched to find users not only in the current domain but also in other domains in the forest.
The attributes included in the GC’s subset of object attributes are those required by the schema and those most commonly used in searches.
Attributes can be added and removed from the Global Catalog using the Active Directory Schema snap-in. Alternatively, they can be added with PowerShell using the following command:

Set-ADObject "yourAttribute" -Replace @{"isMemberOfPartialAttributeSet"=$true}

When Active Directory Domain Services is installed, the GC is added to the first domain controller in the forest.
In order to avoid traversing a WAN to gather GC information, it is recommended that each Active Directory site have at least one Global Catalog server.
It can be added to additional domain controllers with Active Directory Sites and Services by following the steps in this link:
https://technet.microsoft.com/en-us/library/cc755257.aspx

It can also be done with a PowerShell command:

Set-ADObject "CN=NTDS Settings,CN=yourDC,CN=Servers,CN=Default-First-Site-Name,CN=Sites,CN=Configuration,DC=yourDomain,DC=COM" -Replace@{options='1'}

Universal groups can contain objects from any domain in the forest.
The GC holds the membership for all universal groups.
As part of the authorization process, the authenticating DC retrieves the security identifier for all the member’s security groups, which includes universal groups.
Therefore, if the environment has more than one domain, the global catalog server must be queried during authentication in order to find objects from the universal groups in other domains.

FSMO Roles

FSMO stands for Flexible Single Master Operation.
FSMO roles are also referred to as Operations Master roles.
They are various functions performed by Domain Controllers (DCs) in Active Directory.

There are 5 FSMO roles.
Three of the roles exist for every domain in the forest and two apply to the entire forest.
While it is possible to have 5 domain controllers each with a separate FSMO role, it is common to have multiple roles on one server.
The forest-wide roles are Schema Master and Domain Naming Master.
The domain-wide roles are PDC Emulator, RID Master, and Infrastructure Master.

Schema Master

This role is forest-wide.
This domain controller can update the schema.
Given that the schema is not frequently updated, availability of this DC is less important than it is for other roles.
By default, the role is held on the first server promoted to a DC in the forest.

Domain Naming Master

This role is also forest-wide.
It controls changes to the forest namespace.
It can add, remove, rename, and move domains.
Since domain name changes are infrequent, this role is rarely used.
By default, the role is held on the first server promoted to a DC in the forest.

PDC Emulator

This role is domain-wide.
PDC stands for primary domain controller.
It holds the latest password hashes and lockout information for all accounts.
Password changes are immediately forwarded to the PDC from other DCs.
Also, it is the authoritative time source for the domain.
This role most directly affects users.
Thus, the availability of the DC with the role is critically important.

The name emulator came from its ability to emulate the functionality of a Windows NT 4.0 PDC, which was useful in a mixed environment with Windows NT 4.0 BDCs. Extended support for Windows NT 4.0 server ended in 2004 and as a result, it is unlikely to be seen in modern environments.

RID Master

This role is domain-wide.
A RID is a relative identifier used as part of the SID.
The SID is used to uniquely identify objects.
It is similar in function to the GUID but used for security.
As SIDs must be unique in the domain, the RID master maintains the global pool of unique RID values for the domain, a subset of which are given out to other DCs.
In past versions of Active Directory, rolling back a DC on a virtual machine could cause RID reuse.
However, newer versions of Active Directory are able to detect and prevent this event when a virtual machine is restored.

Infrastructure Master

This role is domain-wide.
It is used to help manage cross-domain references.
Thus, if the forest only holds one domain, the role is not relevant as there are no cross-domain references.
In order to update the cross-domain references, it compares the data to the Global Catalog (GC).
If all DCs have the GC, then the placement of this role is irrelevant as it will already have the updated data.

Advanced Active Directory Maintenance

Remote Filesystems 101

NFSv3

iSCSI

SAMBA/CIFS

Remote Filesystems 201

GlusterFS

NFSv4

Netatalk / AFP

S3

Programming 101

Shell scripting basics

Specifying the interpreter

Shell scripts will typically start with #!/bin/sh or #!/bin/bash. This line, affectionally known by various names including hashbang and shebang [http://en.wikipedia.org/wiki/Shebang_(Unix)], is treated as a directive to run the rest of the script with the given interpreter.
This directive, combined with setting the execute bit via chmod tells the system that the file is meant to be executed, rather than simply a file containing text.

The same line may be used instead to specify another shell on the system, such as ksh, tcsh, zsh, or another interpreter entirely, such as Perl, Python, or Ruby.

Portability Considerations

If you only target Linux systems, you may never run into much in the way of shell portability concerns, and you can usually
specify the interpreter to run your script as #!/bin/bash safely. However, many systems other than Linux (and some limited
Linux environments such as recovery modes and embedded systems) will only have the standard Bourne shell installed
as /bin/sh, and if bash is installed at all, it will be in another location.

Bash is backwards-compatible with scripts written for the Bourne shell, but adds new extensions, which will not work
in the original /bin/sh that’s found on BSD, Solaris, and other Unix systems. Anything that needs bash should call
it specifically, anything which does not should simply refer to #!/bin/sh

Caution must be used in writing scripts to specify the correct interpreter. #!/bin/sh is virtually guaranteed to be a
POSIX-compatible shell - that is, a shell which is compatible with the original Bourne shell - but there is no guarantee
that this shell will bash. The term “bashism” commonly refers to features of bash not contained in the POSIX /bin/sh
specifications. The bash manual [http://www.gnu.org/software/bash/manual/html_node/Bash-POSIX-Mode.html#Bash-POSIX-Mode] contains a list of these functions.

Aside from the /bin/bash vs /bin/sh considerations, it’s not guaranteed that bash will be located at /bin/bash - it may
commonly be found at /usr/bin/bash, /usr/local/bin/bash, and many other locations on systems other than Linux - since you
won’t know beforehand where it’s located, a common trick is to specify the interpreter as #!/usr/bin/env bash, using the env
utility as a way to search the path for bash. This technique is also highly recommended for calling other shells and interpreters,
as this allows them to be found anywhere in the path, rather than at some fixed location which may change between systems.

A less common portability consideration, but once still worth mentioning, is that of limited environments, such as
systems on which /usr has not yet been mounted, or recovery environments. If a script must run under such conditions,
it is best to aim for strict POSIX compatibility, and specify your interpreter as #!/bin/sh, so as not to rely on
utilities which may be on unmounted filesystems.

Variables

There are two kinds of variables you can use in your scripts: user-defined and built-in.
Quite obviously, user-defined variables are created by the user (you) and built-in variables are automatically set by the shell you use.

	User-defined variables

To create a variable, all you need to do is assign it a value.

$ ops_var=1

NOTE: When using a BASH shell or writing a BASH script, make sure that you don’t leave spaces in the expression; doing so will lead to an error.
Always make sure you don’t have spaces in variable assignment statements in BASH.

To echo out the value of this variable, use $ops_var like so:

$ echo $ops_var
1

The same variable can be assigned different values in the same script.
Creating a script called ops_script.sh

#!/usr/bin/env bash

First an integer value
ops_var=1
echo $ops_var

Then a string
ops_var="Hello"
echo $ops_var

When this script is executed:

$./ops_script.sh
1
Hello

NOTE: From this point on, assume that the same ops_script.sh is going to be used.
I also won’t be typing #!/usr/bin/env bash every time, but know that it’s present at the top of the script.

Variables can be used in other strings by calling them with curly braces { } around the variable name.

ops_var="Yoda"
echo "${ops_var}, my name is"

$./ops_script.sh
Yoda, my name is

You can use variables to store user input and use it later on in the script.
For example, if you want to ask the user for their name and echo it back to the screen:

print "Hello, what is your name?: "
read name

echo "Hello, ${name}"

I’m going to supply the name “Yoda” in this case.

$./ops_script.sh
Hello, what is your name?: Yoda
Hello, Yoda

By default, all variable values are treated as strings, unless the operation they are used for explicitly uses them as another data type.
Assume you have two variables that you assign integer values to, and you want to add them together.

first_var=1
second_var=2
result=${first_var}+${second_var}

echo ${result}

You would expect the output of this to be 3, but this is not the case with bash.

$./ops_script.sh
1+2

What happened here was that both values were treated as string and the expression ${first_var}+${second_var} got evaluated as the string “1+2”.
To actually add these two numbers, the operation needed is a little different.

first_var=1
second_var=2
result=$((${first_var} + ${second_var}))

echo ${result}

Here, the $(()) tells bash that anything that goes inside these double parentheses needs to be evaluated as an arithmetic operation.

$./ops_script.sh
3

	Built-in variables

The second kind of variables that you can use in your scripts are the ones that the shell automatically populates for you when it is started up.
These variables store information specific to your shell instance, so if you and a co-worker are both logged on to the same server, both of you might not see the same values for all built-in variables.

Here are some examples of built-in variables:

Home directory of the logged-on user.
$HOME

Name of the computer you are currently logged on to
$HOSTNAME

Present working directory
$PWD

The above variables contain some information relative to the shell itself.
But there are other built-in variables you can use within your script which store information like exit statuses of scripts/commands and number of arguments passed to a script.

Exit status of the previously executed script/command
$?

Number of arguments passed to the script
$#

Value of the 1st argument passed to the script
${1}

These variables let your script take in parameters which can be then used throughout the script.

For example, I will write a script that prints the number of parameters received, and use the first one in a string

Print the number of arguments passed
echo "Number of arguments: $#"

Use the first argument in a string
echo "First argument passed was: ${1}"

I’ll run this script a couple of times with different arguments to show how this works

$./ops_script.sh hello world
Number of arguments: 2
First argument passed was: hello

$./ops_script.sh car truck bike scooter
Number of arguments: 4
First argument passed was: car

Control Statements

tests / conditionals
loops

functions

arrays

style

Redirection

I/O

Pipes

stderr vs. stdout

/dev/null and /dev/zero

Regular Expressions

Sed & awk

GIGO

Validating input

Validating output

Trapping & handling exceptions with grace

Programming 201

Common elements in scripting, and what they do

Syntax

Variables

Common data structures

Rosetta stone? One man’s hash is another’s associative array is another man’s
dict(ionary)?

Functions

Objects

C (A very basic overview)

The main loop

Libraries & Headers

#include

The Compiler

The Linker

Make

Lab: Open a file, write to it, close it, stat it & print the file info, unlink
it. Handle errors.

Ruby

Ruby is a very user-friendly, flexible language and fun to use.
To quote from the Ruby website [http://www.ruby-lang.org/], Ruby is described as:

A dynamic, open source programming language with a focus on simplicity and productivity.
It has an elegant syntax that is natural to read and easy to write.

The creator of Ruby, Yukihiro “Matz” Matsumoto [http://en.wikipedia.org/wiki/Yukihiro_Matsumoto], took various parts of his favourite languages (Perl, Smalltalk, Ada, Lisp and Eiffel) to create Ruby.

Reading and writing Ruby code is amazingly easy and fun.
Once you learn the basics, it is amazing how much can be achieved in so little and concise code.
A very simple example would be how iterations or loops are done in Ruby:

for(int i = 0; i < 3; ++i) {
 std::cout << "Hello"
}

You will see this for Ruby:

> (1..3).each { puts "Hello" }
Hello
Hello
Hello
=> 1..3

> (1..3).each do
 puts "Hello again"
> end
Hello again
Hello again
Hello again
=> 1..3

Ruby is a very good tool to write scripts.

Although this will be not covered here in detail, a very important thing to keep in mind is that in Ruby, everything is an object.
This means that you can treat everything i.e. numbers, strings, classes, objects themselves, etc. as objects.
Even the simplest of Ruby code will use this principle:

> 3.times { puts "hello" }
hello
hello
hello
=> 3
> "michael".capitalize
=> Michael

Strictly speaking, there will be cases where the above statement is not true in Ruby.
For example, in Ruby, functions are not first class objects.
In some languages like Javascript and Python, functions are first class objects.
In these languages, a function can be treated like an object, i.e. they have attributes, they can be referenced and passed as parameters, etc.

Running Ruby Code

Ruby scripts are usually text files with .rb extension. You can run your Ruby scripts as follows:

$ ruby script.rb

You can run ad-hoc Ruby code in an interactive session called the Interactive Ruby or irb in short.

$ irb
1.9.3-p448 :001>

All Ruby examples in this topic will start with >, short for 1.9.3-p448 :XXX>.
It means that it is running inside an irb session. 1.9.3-p448 is the Ruby version the author was running while writing this topic.
The XXX are line numbers.

Syntax

	Conditionals

	Symbols

	Blocks

Variables

Common data structures

	Arrays

Arrays in Ruby are ordered collections of heterogenous items.
Items can be added, inserted, removed from an array.
Arrays are indexed starting from 0.

> empty_ary = []
=> []
> str_ary = ["Pune", "Mumbai", "Delhi"]
=> ["Pune", "Mumbai", "Delhi"]
> num_ary = [1, 2, 3.14, 10]
=> [1, 2, 3.14, 10]
> mix_ary = ["this array has", 3, "items"]
=> ["this array has", 3, "items"]
> arr_in_ary = [1, 2, [3, 4], 5]
=> [1, 2, [3, 4], 5]
> str_ary.each { |city| puts city }
Pune
Mumbai
Delhi
=> ["Pune", "Mumbai", "Delhi"]
> num_ary[0]
=> 1
> num_ary[2]
=> 3.14

Notice how arrays are heterogenous, i.e. array elements can be of different types.
And an array can have array as its element.

Array objects are instances of Array class.
So all instance methods are accessible to array objects.
Discussing every method is beyond the scope of this topic but here are a few examples:

num_ary = [1, 2, 3.14, 10]
> num_ary.first
=> 1
> num_ary.last
=> 10
> num_ary.length
=> 4
> num_ary.empty?
=> false
> empty_ary.empty?
=> true

It is highly recommended that one reads the Ruby Array API documentation [http://ruby-doc.org/core-2.0/Array.html].

	Hashes

Hashes in Ruby are ordered collection of unique keys and their values.
A hash key can be of any object type.
Values can be referenced by their keys.

> empty_hash = {}
=> {}
> device_hash = { samsung: "Galaxy S", apple: "iPhone"}
=> {:samsung=>"Galaxy S", :apple=>"iPhone"}
> device_hash[:samsung]
=> "Galaxy S"
> country_hash = { "America" => "Washington DC", "India" => "New Delhi", "Germany" => "Berlin" }
=> {"America"=>"Washington DC", "India"=>"New Delhi", "Germany"=>"Berlin"}

Hash objects are instances of Hash class.
So all instance methods are accessible to hash objects.
Discussing every method is beyond the scope of this topic but here are a few examples:

> country_hash["America"]
=> "Washington"
> country_hash["Sweden"] = "Stockholm"
=> "Stockholm"
> country_hash
=> {"America"=>"Washington DC", "India"=>"New Delhi", "Germany"=>"Berlin", "Sweden"=>"Stockholm"}
> country_hash.values
=> ["Washington DC", "New Delhi", "Berlin", "Stockholm"]
> country_hash.length
=> 4
> empty_hash.empty?
=> true

It is highly recommended that one reads the Ruby Hash API documentation [http://www.ruby-doc.org/core-2.0/Hash.html].

Functions

Functions are used in Ruby to perform a specific task.
In Ruby parlance, functions are generally termed as methods.
Ideally, a single method should do a single task and no more.
In Ruby, methods accept parameters and return a value.

A methods is enclosed inside def and the end keywords.
Parentheses is optional in Ruby for passing parameters.
The last line inside a Ruby method is returned by the method. Using return keyword is optional.

> def print_hello
 puts "hello"
 end
=> nil
> def sum(a, b)
 a + b
 end
=> nil
> def sum2 a, b
 return a + b
 end
=> nil
> print_hello
=> hello
> sum(2, 3)
=> 4
> sum 4, 6
=> 10

Objects and Classes

As mentioned above, in Ruby, everything is an object.
Ruby also has a class called Object.
It is the default root of all Ruby objects.

Ruby objects can have attributes and methods.
An instance of Object class (and in general, to create an instance of any class) can be created as follows:

> obj = Object.new
=> #<Object:0x007fcba39874b8>

In Ruby, you can create your custom classes.
These can used along with the classes that come with Ruby and its standard library.

Classes can have methods.
Classes also have a special method called initialize.
When a new object is created in Ruby using new method, an uninitialized object is first created and then initialize is called.
Any parameters passed to new is passed to initialize.

An instance variable in Ruby is prepended by @ symbol.

> class Student
 def initialize(name, age)
 @name = name
 @age = age
 end

 def details
 puts @name
 puts @age
 end
 end
=> nil
> s1 = Student.new('Cathy', 20)
=> #<Student:0x007fcba39b78c0 @name="Cathy", @age=20>
> s1.details
Cathy
20
=> nil

Rubygems

Todo

Explain more about what rubygems are as well as http://rubygems.org

Databases

Python

Python is one of the most versatile languages you’re going to use in your career.
You will soon see that for almost everything you want to do, Python either has a something in its standard library or an amazing third-party module that you can import in seconds.
But since this is a guide for operations engineers, I’ll focus the discussion more towards Python’s scripting capabilities.

NOTE: Before I start, I want to point out a series of documents called Python Enhancement Proposals [https://www.python.org/dev/peps/], PEP for short.
Like their title suggests, these are potential enhancements to the Python language that have been proposed by members of the community.
There’s a lot of them, and you don’t have to go over every single one, but you can find some very useful tips and best-practices there.

Syntax

	Indentation

If you’ve ever written or read any code in C, C++, Java or C#, you’re used to seeing curly braces ({}) pretty much everywhere.
These compiled languages use curly braces to denote the start and end of functions, loops and conditional statements.
Python, on the other hand, uses indentation to achieve the same goal. What this means is that where you see this in C++:

if (3>2) {
 // Do something
}

You will see this for Python:

if (3>2):
 # Do something

As you can see, Python didn’t need curly braces to signify the start or end of the if conditional; a simple indent does the job.
Now when it comes to indentation, PEP8 [https://www.python.org/dev/peps/pep-0008/] says that you should use 4 spaces to indent your code.
Keep in mind that this specifically means spaces and not tabs.
Fortunately for you, most text editors today can automatically convert tabs to spaces so you don’t have to hit four spaces every time you want to indent a line.
However, if you are dealing with some legacy code that uses 8 space tabs, feel free to continue doing so.

Indentation is by far the most important part of Python’s syntax you should keep track of.
If there’s two lines in your code where one uses 4 spaces and another uses one 4-space tab, Python’s going to give you errors when you try to run your script.
Be consistent with your indentation.

	Conditionals

Conditionals refer to if, else statements where you’re checking if some condition is met and then taking action based on whether it is or not.
Python supports conditionals just like any other language, with the only exception being indentation as explained above.
A complete conditional block would look like this:

Check if the variable 'num' is greater than or less than 5
if (num > 5):
 print "Greater"
else:
 print "Less"

You can even have ‘else if’ conditions, which in Python are used as elif

Check if the variable 'num' is 2 or 5
if (num == 2):
 print "Number is 2"
elif (num == 5):
 print "Number is 5"
else:
 print "Number is neither 2 nor 5"

	Boolean Operations

Python can perform all of the standard boolean operations:and, or and not.
The operations can be used as statements of their own:

>>> (3 > 2) and (3 < 4)
True
>>> (2 > 3) or (3 > 4)
False
>>> not (2 > 3)
True

and even in conditionals:

if not ((2 < 3) or (3 > 4)):
 print "Neither statement is true"

Variables

Variables in Python work just like in any other language.
They can be assigned values like this:

times = 4
name = "John"

They can be used in almost any statement.

>>> print times
4
>>> times + times
8

You might have noticed that the variable didn’t have to be created with a specific type before being assigned a value.
Python allows you to assign any value to a variable and will automatically infer the type based on the value it is assigned.
This means that the value assigned to a variable can be replaced with another value of a completely different type without any issues.

>>> times = 4
>>> print times
4
>>> times = "Me"
>>> print times
'Me'

However, if you try to perform an operation with two variables that have values of conflicting types, the interpreter will throw an error.
Take this example where I will try to add a number and a string.

>>> times = 4
>>> name = "John"
>>> times + name
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

As you can see here, the interpreter threw a TypeError when we tried to add an integer and a string.
But there is a way around this; Python lets you type cast variables so their values can be treated as a different type.
So in the same example, I can either try to treat the variable times as a string, or the variable name as an integer.

>>> str(times) + name
'4John'
>>> times + int(name)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'John'

Here you can see that when we cast times as a string and added it to name, Python concatenated the two strings and gave you the result.
But trying to cast name as an integer threw a ValueError because ‘John’ doesn’t have a valid base 10 representation.
Remember, almost any type can be represented as a string, but not every string has a valid representation in another type.

Common data structures

Out of the box, Python implements a few major data structures.

	Lists

Lists in Python are the equivalent of arrays in other languages you may be familiar with.
They are mutable collections of data that you can append to, remove from and whose elements you can iterate over.
Here’s some common operations you can perform with lists:

>>> to_print = [1, 4]
>>> to_print.append('Hello')
>>> to_print.append('Hey')
>>> to_print
[1, 4, 'Hello', 'Hey']
>>> for i in to_print:
... print i
...
1
4
Hello
Hey
>>> to_print[1]
4
>>> to_print[-1]
'Hey'
>>> to_print[-2:]
['Hello', 'Hey']
>>> to_print.remove(4)
>>> to_print
[1, 'Hello', 'Hey']

Just like arrays in other languages, Python’s lists are zero-indexed and also support negative indexing.
You can use the : to get a range of items from the list.
When I ran to_print[-2:], Python returned all items from the second last element to the end.

You may have also noticed that I had both numbers and strings in the list.
Python doesn’t care about what kind of elements you throw onto a list.
You can even store lists in lists, effectively making a 2-dimensional matrix since each element of the initial list will be another list.

	Dictionary

Dictionaries are a key-value store which Python implements by default.
Unlike lists, dictionaries can have non-integer keys.
Items of a list can only be referenced by their index in the list, whereas in dictionaries you can define your own keys which will then serve as the reference for the value you assign to it.

>>> fruit_colours = {}
>>> fruit_colours['mango'] = 'Yellow'
>>> fruit_colours['orange'] = 'Orange'
>>> fruit_colours
{'orange': 'Orange', 'mango': 'Yellow'}
>>> fruit_colours['apple'] = ['Red', 'Green']
{'orange': 'Orange', 'mango': 'Yellow', 'apple': ['Red', 'Green']}
>>> fruit_colours['mango']
'Yellow'
>>> for i in fruit_colours:
... print i
...
orange
mango
apple
>>> for i in fruit_colours:
... print fruit_colours[i]
...
Orange
Yellow
['Red', 'Green']

You should be able to see now that dictionaries can take on custom keys.
In this example, my keys were names of fruits, and the value for each key was the colour of that particular fruit.
Dictionaries also don’t care about what type your keys or values are, or whether the type of a key matches the type of its value.
This lets us store lists as values, as you saw with the colour of apples, which could be red and green.

An interesting property about dictionaries that you might have noticed, is that iterating through the dictionary returned only the keys in the dictionary.
To see each value, you need to print the corresponding value for the key by calling fruit_colours[i] inside the for loop where i takes on the value of a key in the dictionary.

Python implements a lot more data structures like tuples, sets and dequeues.
Check out the Python docs for more information these: http://docs.python.org/2/tutorial/datastructures.html

Functions

Functions in Python work exactly like they do in other languages.
Each function takes input arguments and returns a value.
The only difference is syntax, you define functions with the keyword def, and don’t use curly braces like in Java, C, C++ and C#.
Instead, function blocks are separated using indentation.

>>> def square(x):
... result = x*x
... return result
...
>>> square(3)
9

You can even call functions within other functions

>>> def greet(name):
... greeting = "Hello "+name+"!"
... return greeting
...
>>> def new_user(first_name):
... user = first_name
... print "New User: "+user
... print greet(user)
...
>>> new_user('Jack')
New User: Jack
Hello Jack!

Objects

Version Control

Git

SVN

CVS

API design fundamentals

RESTful APIs

JSON / XML and other data serialization

Authentication / Authorization / Encryption and other security after-thoughts.

:)
https://github.com/ziliko/code-guidelines/blob/master/Design%20an%20hypermedia(REST)%20api.md

Continuous Integration

Hardware 101

Hardware Types

Rackmount

Rackmount refers to servers mounted in 19-inch relay racks. The server’s height is measured in U or rack units (1.75 inches) and servers typically range in height from 1U to 4U(though they can be larger).
The rack they are installed into is typically 42U high, but you rarely see installations with more that 40 servers in a rack.
Servers are secured to the rack via specialty rails.

Rackmount servers are the most common physical hardware installation in a datacenter.
Individual rackmount systems can usually meet most density requirements, but in large installations physical cable management can become an issue.
In addition systems management can be a problem in large installations.
Rackmount servers usually are less expensive than other solutions, and modern rackmount servers typically include some type of remote-management.

Blades

A blade is a server on a removable card which connects to a chassis for power, network, video, and other services.
The blade chassis is typically a rackmount unit, but sizes of this are usually much larger, using 8U or more depending on the number of blades the chassis supports.

Blades were originally hoped to solve server density issues, and some products have the ability to house four servers in only 2U of space.
In recent years blades have been used to solve physical cable management issues in complex environments, since there are very few cables required to connect the systems to other pieces of infrastructure.

SANs

A Storage Area Network or SAN is a network that provides access to centralized block storage.
Common choices for the network fabric are Fiber Channel and Ethernet.
Solutions built around Ethernet usually rely on an additional protocols to implement access, and may require special configurations for high throughput (thing like large frames).
The most common Ethernet based approach uses iSCSI.
These networks are typically separate and dedicated to providing access to storage.

SAN Array

A SAN Array is a dedicated array of disks that has been designed to connect to a SAN.
SAN Arrays will often support Ethernet or Fiber Channel, and some vendors will support both network types within the same unit.

Most SAN Arrays have two main components, a head unit and an array.
The head unit controls a collection of arrays, and the SAN configuration.
Most SANs come with two head units for redundancy.
The Array unit holds some number of disks, and typically connects directly to the head units.
The head unit is usually connected to the network fabric.

SANs installations vary from vendor to vendor, but they generally can be installed in standard 19-inch relay racks, or come in a custom cabinet.
Power requirements also vary from vendor to vendor, but it its not atypical that they require dedicated power circuit due to the large number of spinning disks.

NAS

A Network-Attached Storage device or NAS is a specialty server designed to provide storage to other servers.
Unlike SANs, a NASs will typically implement an standard network protocol like SMB or NFS to expose the storage to the client.
The client will present these to its users as standard network share.

NASs and SANs are almost indistinguishable from each other physically.
They will typically have head units and array units, and there will typically be two head units for redundancy.
They will typically install into a 19-inch rack, or come with a custom cabinet.
Lastly, they will typically need a dedicated circuit due to the large number of spinning disks.

Basic server architecture

CPU

RAM

Motherboard

Bus

Disk controllers

Network devices

BIOS/UEFI

PCI-E Cards

Disk management

Arrays

RAID/ZFS

Logical Volume Management

Performance/Redundancy

RAID/ZFS

Power

Electrical overview

110v/220v, amperage, 3 phase power

UPS

common plug types

common circuit types

Troubleshooting

Remote management (IPMI, iLO, DRAC, etc)

Common MCE log errors

System burn-in

Datacenters 101

Power budgets

A/B power and cascading outages

Cooling budgets

You will be judged by the tidiness of your rack

Machine and cable labeling

Traditional naming conventions

Datacenters 201

Networking many racks

Power

N+1, N+2 power

Fused vs usable

calculations

Cooling

N+1, N+2

The cooling exhausts for redundant or load-sharing aircos should be
located in enough distance from each other that they do not influence each
others effectiveness.

Cooling efficiency

Surrounding temperature and load both influence how good an airco can work.
For example it will work best if it’s not fully loaded (has to move as many
units of thermal heat as it’s specified for) and if the outside temp is
somewhere below 30Deg Celsius.
(Hopefully someone knows a smart formula for that)
Their effectiveness drops if they’re located too close to places where hot air
is not really moving, i.e. ground level or non-raised on a rooftop, or on a
roof section that is surrounded by higher parts of the building.
Spraying water with a sprinkler can help.

Cooling failures

Very important is to gather information on the duration of a cooling failure
so far. The surrounding datacenter structures delay a failure’s effect by
absorbing heat.
That means two things:
1. At some point the walls have gained a temperature close to the ambient.
From that moment, they will not absorb more heat, resulting in a massive
increase of the rate at which the room is heating up
2. A sliding delay that means the room will take somewhat as long as it took
to heat up to cool down again, even if you already shut down everything that
consumes power.

Generally you need to assess a few things:
- is the temperature currently still a tolerable operating temperature
- how quickly is it rising
- how soon will the fault be fixed and when will a tolerable temperature be
reached
- how long is the expected time of overheating

	what damage to expect from quick heat-up and cool-down
(i.e. tape backups in progress at the time of failure will be probably lost
because of the stretching effects on the media. Disks can fail by the dozen at
the same time)

	what are the absolutely critical systems running, and how much power do they use

	how many not absolutely critical systems are running, and how much power will
it save to turn them off.

	How fast can you shut them down? (i.e. on Unix, that could mean init 2, wait,
flip the switch)

	can you shut down enough to keep the most critical systems running?

	can you also shut down enough to massively flatten the temperature curve?

Generally, the goal is to flatten the effects so that the critical
infrastructure gets away with a very and constant slow hike up and down at
less than 2-3 deg / hr.
This is also to be respected when the cooling is fixed again, it should run
at emergency power only till the pivot is taking off the curve and the the
power needs to be constantly decreased so the ambient takes a slow fall instead
of going from 55C to 21C in 30 minutes.
(Dangers: Humidity, microscopic tears on PCB)

Physical security and common security standards compliance requirements

Suggested practices

Access control

Security should require an ID from anyone coming onsite, and not stop
at having you fill a form where you just write anything you want.

Techs should need to bring a ticket ID, and this ticket ID plus the tech’s
name should be announced by the vendor to security, plus(!) a callback to
a defined number known to security. So, a double handshake with a token.
This is really important to avoid incidents like suddenly missing two
servers because “there were some techs that replaced it”

Most critical DCs will have security accompanying you to the server.
Some will keep the sec person around while the tech is working.
The really smart ones train their sec staff so that they will know which
server the tech needs to go to and which disk is to be replaced as per the
original ticket. (If you think the security people can’t handle that, then
just ask yourself who’s to blame since it does work for other DCs)

Datacenters 301

Power

PUE (Power Usage Effectiveness)

3 phase power

Note you can’t use a wire clamp to measure a 3-phase power cable, you need to
measure each phase by itself.

DC power

48V (telco land, NEBS standard) and other versions that are being tried,
(12, 24V).
Grounding requirements, power bars. Devices often have different plugs.
Most of the time still using A+B circuits
Reduced conversions == Reduced losses. Amplified by most larger servers (i.e.
HP C7000, SuperDome) using 48V internally.
Even more interesting with large UPS banks since those also use 48V.

Increasing cooling efficiency

CFM

Hot aisle / cold aisle design fundamentals

Hot aisle / cold aisle containment

Chimneys

Design Options

Raised floor (18in & 36in)

Virtualization 101

Intro to virtualization technologies

What problems is virtualization good at solving, what isn’t it good at.

Hardware assisted vs Paravirtualization

Hypervisors - overview, some comparison

Container-based virtualization (Jails, Containers/Zones, OpenVZ)

The Cloud

The different types of “cloud”

Unfortunately “cloud” is a term which is overloaded in the industry.
This course refers to cloud in the Infrastructure as a Service (IaaS) sense, not
the hosted applications sense.

There are currently two types of IaaS cloud being deployed.
These are “public clouds”, which are services such as Amazon’s AWS, Rackspace’s
OpenStack based cloud offering or HP’s OpenStack based cloud.
There are a variety of companies of various sizes offering these public cloud
services.
These services are run in the hosting company’s datacenter, and an
administrator’s access to the infrastructure is limited to launching and
configuring virtual machines, normally through a web-based dashboard or an API.

The second type of cloud is “private clouds”.
These are conceptually similar to public clouds, but run in your own datacenter.
The point here is that you retain complete control over the environment – if
some of your virtual machines need access to unusual hardware, or store data
which you’re unwilling to move offsite, then private cloud might be a good
choice.
The open source OpenStack system is often used to build these private clouds,
and there are various vendors offering private cloud solutions, including
RackSpace, Piston, and Canonical.

Cloud providers comparison. Pros & Cons

Cloud management tools and APIs

Virtualization 201

Managing virtualized infrastructures (Private clouds)

Balancing CPU, Memory, and IO for guests

Leveraging virtualization for development

Leveraging virtualization for production

Security implications of virtualization

Logs 101

Common system logs & formats

There are generally three places where a process may be expected to send logs: stderr, a file, or syslog.

Standard Error

stderr is a file descriptor opened automatically (along with stdin and stdout) for any new process on a Unix system that is intended as a simple way for developers to provide feedback to a user without assuming any fixed format.
stderr is always exposed to a process as file descriptor 2.
If a process is launched from a shell attached to a tty, stderr usually appears inline with the rest of the program’s output.
In the shell, stderr may be redirected in order to differentiate it from stdout or to send it to a file.

The find command often writes messages to stderr upon encountering permissions issues.
We’ll use it as an example.

$ mkdir noperms
$ chmod 000 noperms/
$ find noperms/
noperms/
find: `noperms/': Permission denied

The name of the directory noperms/ is first written to stdout, then a permission denied error is written to stderr.
Suppose we expected a large number of these errors to occur and wanted to append them in a log file, separate from the info written to stdout.
Remember: stderr is always file descriptor 2.

$ find noperms/ 2>>find.log
noperms/
$ cat find.log
find: `noperms/': Permission denied

It is important to note that we used the append >> operation here, rather than a single > which would overwrite find.log every time this command was run.
This sort of redirection is a feature of the shell that is used quite commonly in init scripts and cron tasks to capture the output of both short lived commands and long running daemons.

Log files

The authors of many daemons add the ability to log directly to a file, rather than depending on the shell to provide redirection of stderr.
There is no standard format or convention for a daemon to write it’s own logs beyond opening a file and appending lines to it.
Some daemons provide extremely flexible log configuration whereas others might only allow you to set a file path.

The tail command’s –follow or -f flag is an extremely useful tool for viewing new lines appending to a file in realtime.
For example, if you were running a web server like nginx or Apache that was configured to send it’s access log to a file, you could use tail to see new requests.

$ tail -f /var/log/nginx/access.log
127.0.0.1 - - [17/Aug/2013:02:53:42 -0700] "GET / HTTP/1.1" 200 151 "-" "curl/7.22.0 (x86_64-pc-linux-gnu) libcurl/7.22.0 OpenSSL/1.0.1"
127.0.0.1 - - [17/Aug/2013:02:53:43 -0700] "GET / HTTP/1.1" 200 151 "-" "curl/7.22.0 (x86_64-pc-linux-gnu) libcurl/7.22.0 OpenSSL/1.0.1"
127.0.0.1 - - [17/Aug/2013:02:53:43 -0700] "GET / HTTP/1.1" 200 151 "-" "curl/7.22.0 (x86_64-pc-linux-gnu) libcurl/7.22.0 OpenSSL/1.0.1"

With the -f option, tail won’t exit on it’s own, it will continue to wait for new lines to be written to the log file and write them to the terminal until it receives a signal or encounters an error.

It is important to understand that after a file is opened for writing, the process writing the file only refers to that file by its file handle, which is a number assigned by the kernel.
If that file is renamed with mv or deleted with rm, writes to that file handle will still succeed.
This can sometimes lead to counter-intuitive situations where log messages are being written to a file that’s been renamed for archival or to an inode that no longer has a filename associated with it.
Some daemons provide mechanisms for closing and reopening their log files upon receiving a signal like SIGHUP but quite a few don’t.

Syslog

Logging directly to files can add a lot of complexity to an application as close attention has to be paid to the use of file handles, log directory permissions, timezones, etc.
Syslog was created to provide a simple logging interface to application developers while offloading the tasks of sorting and storing logs to a separate daemon.

Every message sent to syslog has three pieces of information: facility, priority, and message.
The facility tells syslog the type of information in the message.
For example, login attempts are logged to the “auth” facility.
The priority tells syslog the importance of the message.
Syslog provides a fixed set of facilities and priorities that a program may use.
Some examples of facilities are: auth, user, daemon, kern.
Examples of priorities are debug, info, warn, critical.

All modern Linux distributions ship with a syslog daemon and most of them are pre-configured to write messages to various files in /var/log/, depending on their facility or priority.
While the exact names of these files are not consistent across different Linux distributions, a few common ones like /var/log/auth.log and /var/log/kern.log almost always exist.
If you haven’t already, take a look at the files in /var/log/ on your system to get a sense of the types of log messages available in these files.

Example log from a mail server (redacted to protect the guilty):

$ tail /var/log/mail.log
Aug 17 10:25:42 front01 postfix/smtpd[25791]: connect from unknown[115.77.XXX.XXX]
Aug 17 10:25:43 front01 postfix/smtpd[25791]: NOQUEUE: reject: RCPT from unknown[115.77.XXX.XXX]: 554 5.7.1 Service unavailable; Client host [115.77.XXX.XXX] blocked using truncate.gbudb.net; http://www.gbudb.com/truncate/ [115.77.XXX.XXX]; from=<supsi@yahoo.com> to=<synack@XXX.XXX> proto=ESMTP helo=<XXX.viettel.vn>
Aug 17 10:25:43 front01 postfix/smtpd[25791]: lost connection after RCPT from unknown[115.77.XXX.XXX]
Aug 17 10:25:43 front01 postfix/smtpd[25791]: disconnect from unknown[115.77.XXX.XXX]

One of the advantages of using a syslog daemon is that the format of log lines can be configured in a single place and standardized for all services using syslog on a single host.
In this example, every line starts with a timestamp, the server’s hostname, the name of the program and a PID.
While the name of the program is set when the connection to syslog is first opened, the rest of these fields are generated by the syslog daemon itself and added to every line.

Many different syslog implementations exist with a variety of configuration mechanisms and design philosophies.
Most current Linux distributions ship with a syslog daemon that implements some superset of the original Unix syslogd’s functionality.
The following examples will use rsyslogd, which is currently included in Ubuntu Linux and according to it’s manpage “is derived from the sysklogd package which in turn is derived from the stock BSD sources.”

/etc/rsyslog.d/50-default.conf (truncated):

#
First some standard log files. Log by facility.
#
auth,authpriv.* /var/log/auth.log
.;auth,authpriv.none -/var/log/syslog
#cron.* /var/log/cron.log
#daemon.* -/var/log/daemon.log
kern.* -/var/log/kern.log
#lpr.* -/var/log/lpr.log
mail.* -/var/log/mail.log
#user.* -/var/log/user.log

#
Logging for the mail system. Split it up so that
it is easy to write scripts to parse these files.
#
#mail.info -/var/log/mail.info
#mail.warn -/var/log/mail.warn
mail.err /var/log/mail.err

Lines beginning with # are comments.
Each line has two fields: a filter and an action.
The filter is a comma-separated list of facility.priority where * is used as a wildcard, meaning match anything.
The action is commonly just the name of a file, which causes all messages that match the filter to be written to that file.
The actions in this example starting with - invert the behavior and cause messages matching the filter to be excluded from the given file.
Many other flags and options are available here for configuring the exact behavior of log formatting and writing to places other than files.

As soon as you start to manage more than a couple of servers, you start to think about ways to aggregate the logs from all of those servers in a single place so that you don’t have to login to each one individually to find an issue.
Remote log aggregation is also often used to provide an audit trail for security events or a source of data that can be fed into a metrics system like Graphite or Ganglia.
There is a standard protocol for sending syslog events over a network to another host over UDP port 514.

Configuring remote logging:

auth.* @10.0.0.2

As UDP is connectionless and makes no delivery guarantees, syslog messages sent to a remote host using this standard protocol can be dropped, delayed, or intercepted without any real indication to the user.
For these reasons, many syslog daemons implement different extensions and mechanisms for transporting this stream reliably.
The simplest option is to replace UDP with TCP to provide a reliable transport layer.
When configuring syslog aggregation, attention and care should be paid to security as syslog messages are often used as an audit trail and need to be protected against eavesdropping and manipulation.
Read your syslog daemon’s documentation to understand what options are supported.

Log Rotation

No matter which logging option you choose, logging directly to files or using syslog, log files grow large and unwieldy over time and become difficult to use, for example identifying specific events.

To handle this problem, log files are rotated on a regular basis, by making a copy of the current log files and creating fresh log files.
The old logs can be archived, compressed, mailed to an address or removed at predetermined intervals.

The Logrotate [https://fedorahosted.org/logrotate/] application eases management of systems that generate large numbers of log files.
It allows automatic rotation, compression, removal, and mailing of log files.
The log files may be handled at intervals (daily, weekly and monthly) or when they grow too large.
It is usually scheduled to run daily.

Everything about the log files to be handled by logrotate as well as the actions to be carried out on them is read from the logrotate configuration files.
The main configuration file is /etc/logrotate.conf.
Applications can also create configuration files in the /etc/logrotate.d directory, logrotate automatically includes all configuration files in this directory.

sample logrotate configuration file
compress

/var/log/messages {
 rotate 5
 weekly
 postrotate
 /sbin/killall -HUP syslogd
 endscript
}

"/var/log/httpd/access.log" /var/log/httpd/error.log {
 rotate 5
 mail foo@bar.org
 size=100k
 sharedscripts
 postrotate
 /sbin/killall -HUP httpd
 endscript
}

Lines beginning with # are comments and can appear anywhere in the configuration file.
The first few lines set global options.
In this example logs are compressed after rotation.

The next section defines how to handle the log file /var/log/messages.
The log file is rotated weekly and removed after going through 5 rotations.
The postrotate option defines a command to execute after the log file is rotated but before it is compressed.
Postrotate is usually used to force daemons to reload their configurations so they will log to the new log file.

Log file names can be quoted or not quoted. Quoting allows matching file names with spaces in them.
The second section defines how to handle two files, /var/log/httpd/access.log and /var/log/httpd/error.log.
These logs files are rotated when they grow over 100k in size.
The old log log files are mailed to foo@bar.org (uncompressed) after going through 5 rotations.
The sharedscripts options means that the command for postrotate should be run only once no matter how many log files match.
In this case although two files are handled, the command /sbin/killall is executed once.

There a lot more options available for logrotate, you can get a full list by checking the logrotate man page.

Logs 201

Centralized logging

Syslogd, Rsyslog

Benefits for developers

Log parsing

Search & Correlation

(Splunk, Logstash, Loggly, etc)

Databases 101 (Relational Databases)

What is a Database?

A database is a program or library that helps you store data.
They usually impose some sort of structure to the data to assist with querying and filtering.
The most common structure databases use to store data is a table, and most databases will use multiple tables to store data.

A table is composed of rows representing an item, and columns represent some attribute of that item.
Much like using a spreadsheet for a task list, where a row would be a task, and you may have a column for a task name, and a second column to determine whether it has been completed.

What is a Relational Database?

A relational database is a database in which data is organized into tables, usually with some form of relationship between them.
For example, a table containing customer names and addresses, and a table containing sales transactions.
Rather than repeat customer details every time a transaction is done, the data is stored once in one table, and then a unique reference is stored in the sales transactions table, linking each transaction to the customer.
This approach makes a relational database very efficient for storing data, since reused data can be stored in a single table and referenced in other tables.

Data can be retrieved in many forms by combining multiple tables into new tables using operations like JOIN.
The composed table will have new rows that are a combination of its parent tables.

Why We Use Databases?

We use databases to store data.
They help provide us guarantees that data is stored and that it exists in the correct format.
In addition most databases are heavily optimized making data retrieval very fast.

Because of these attributes, we use databases a lot.
Most e-commerce sites use databases to keep inventory and sales records.
Doctors offices use databases to store medical records, and the DMV uses databases to keep track of cars.
Lawyers use databases to keep track of case law, and many websites use databases to store and organize content.
Databases are everywhere, and you interact with them daily.

What is SQL?

SQL or Structured Query Language is a domain specific language used for accessing databases.
It has a declarative syntax, meaning you declare the structure you want returned, the sources, and constraints in a single statement.
The database’s query parser and planner will determine a how to retrieve your data from this statement.

SQL shell

Many relational databases provide an interactive CLI for interacting with the database.
For example, MySQL provides the mysql command, Postgresql provides psql, and Oracle provides sqlplus.
These programs give you the ability to compose queries, and diagnose issues with the software.

todo:: Add example of connecting with each command.

MySQL

To connect to a MySQL database from the CLI your command would usually take this form:

$ mysql -u username -p -h server-address
Password:

Of these flags, -u = username, -p = password, and -h = hostname.
You may provide the password on the command prompt: -ppassword (no space after flag!).
We strongly advise against this, as this may leave the password visible in your shell history.

Creating databases

Most database platforms allow you to create a new database using the CREATE DATABASE SQL query.
It can be executed via a connection to the server, or via the SQL shell.

A MySQL example:

mysql> CREATE DATABASE example_database;

Specialized Create Database Commands

Some database platforms have specialized GUI tools, or CLI tools.
For example Postgresql has a UNIX command createdb that creates databases.
In many cases these commands are just wrappers around the standard SQL statements.

MySQL

$ mysqladmin create example_database

Postgresql

$ createdb example_database

Some platforms, like MySQL support multiple databases per instance, while other platforms like Oracle support one database per instance.
You should check the documentation for your particular vendor to see what is supported.

Creating users

Users can be created in most databases using the the CREATE USER statement.

mysql> CREATE USER username;

Specialized Create User Commands

Some relational databases provide additional ways of creating users like specialized command line programs.

MySQL

MySQL does not support creation of users via the mysqladmin command.

Postgresql

$ createuser username

Create Tables

Tables are organized into rows and columns.
Data is stored inside these tables.
In order to host this information we need to create a table.
We do this with the CREATE TABLE statement.

Standard Syntax is:

CREATE TABLE table_name (
column1 datatype(size),
column2 datatype(size),
column3 datatype(size)
);

Here is an example.
This will create a table called “Users” with 2 columns.

CREATE TABLE Users (
name varchar(50),
address varchar(50)
);

Alter Table

The ALTER statement will allow you to modify the design of your current database.
For example, if you have a table called “Users” which contains Names and Addresses, but you need need to add an age column, you could do so with:

ALTER TABLE Users ADD age int;

Standard Syntax is:

ALTER TABLE table_name ADD column_name datatype

If we need to modify a current table, we can also do so with the ALTER statement.
If in the previous example you wanted to change the datatype of age from an integer to varchar, you would do so with:

ALTER TABLE Users MODIFY age varchar(50);

Standard Syntax is:

ALTER TABLE table_name MODIFY column_name datatype

If you now realize you don’t need the age column at all, you can drop it all together with:

ALTER TABLE Users DROP age;

Standard Syntax is:

ALTER TABLE table_name DROP column_name

Drop Table

If you have created a table and need to remove it from your database, you can with the DROP statement:

Standard Syntax is:

DROP table table_name

If we want to drop our table we created earlier (Users) we would use this command:

DROP table Users;

Data Type

There are different types of data that we will store in our database.
It can be simple text or a number, sometimes it is a mix of these things.
The table below lists some common Standard SQL commands that are also in MySQL.
It is important to note this is not a complete list.

	Data type

	Description

	char(n)

	Fixed width character string, can hold letters and numbers-Max of 8,000 characters

	varchar(n)

	Variable width character string, can hold letters and numbers- Max of 8,000 characters

	text

	Variable width character string. Value is represented internally by a separately allocated object

	int

	Allows whole numbers between -2,147,483,648 and 2,147,483,647

	float

	A small number with a floating decimal point

	decimal

	An exact numeric data value, allowing for a fixed decimal point

	date

	Date formated as YYYY-MM-DD

	datetime

	Date and time combination formated as YYYY-MM-DD HH:MM:SS

	timestamp

	Stores a unique number that gets updated every time a row gets created or modified

Granting privileges

Privileges can be granted using the SQL GRANT statement. These
statements are persisted by the RDBMS when issued. The typical
command format is:

GRANT [PRIVILEGE] on [OBJECT] to [USER];

The standard SQL privileges are:

	Privilege

	Description

	ALL

	Allows user all privileges

	ALTER

	Allows user to alter schema objects

	CREATE

	Allows user to create schema object like tables

	DELETE

	Allows user to delete from an object

	EXECUTE

	Allows user to execute a store procedure or function

	INSERT

	Allows user to add new data to an object

	REFERENCES

	Allows user to create a referential table constraint

	SELECT

	Allows user to read from an object

	TRIGGER

	Allows user to create a trigger

	TEMPORARY

	Allows user to create temporary tables

	UPDATE

	Allows user to update existing data in an object

Below is an example granting a user SELECT privileges on a table

GRANT SELECT ON TABLE example_table TO user;

You can also grant multiple privileges in a single statement.

GRANT SELECT,INSERT ON TABLE example_table TO user;

Many databases stray from the SQL standard here, and it is important to read your database’s documentation when granting privileges.
There may be additional privileges not listed here and syntax can vary significantly.

Removing Privileges

Privileges are removed with the SQL REVOKE statement.
It follows a similar command format like grant:

REVOKE [PRIVILEGE] on [OBJECT] FROM [USER];

Basic normalized schema design

A normalized schema is a database with a table and column structure designed to reduce data redundancy.
Typically data is placed into tables with a unique identifier, or primary key, and then is referenced by id in any tables that wish to use that data.

Suppose we have two types of records in a database; one for a city’s population
and one for a city’s average temperature.
We could simply create the tables like so:

City Population:

	City

	Population

	San Francisco

	812,826

City Temperature:

	City

	Temperature

	San Francisco

	73 F

A normalized version of this would have three tables instead of two.

City ID and Name:

	City_id

	Name

	1

	San Francisco

City ID and Temperature:

	City_id

	Temperature

	1

	73 F

City ID and Population:

	City_id

	Population

	1

	812,826

The advantage of this design is that it prevents you from having to enter data multiple times, and generally reduces the storage cost of a row.
If San Francisco changed its name you would only need to update a single row instead of two tables like the first example.
SQL allows you to replace the id with a name using a JOIN statement
when the data is retrieved, making it functionally identical to the two table example.

Select, Insert, Update and Delete

SELECT

The SELECT statement is the standard way you read from a table in an SQL database.
You can use it to retrieve a set of data, and perform aggregations on them.
The standard syntax is:

SELECT [column1,column2|*] FROM [TABLE];

By adding a WHERE statement, you can have the database filter results:

SELECT user_id, user_name FROM users WHERE user_id = 1;

You can join tables using a JOIN statement.
In this example we’re temporarily assigning an alias of ‘u’ for the table users and an alias of ‘a’ for the table addresses:

SELECT user_id, user_name FROM users u JOIN addresses a
ON u.user_id = a.user_id WHERE user_id = 1;

Count the rows in a table by using an aggregation:

SELECT COUNT(1) FROM users;

Order by a column:

SELECT * FROM users ORDER BY user_name;

INSERT

The INSERT statement is used to add additional data into a table.
It can be used to insert data either a row at a time or in bulk.
The standard syntax is:

INSERT INTO table (column1, column2, column3) VALUES (value1, value2, value2)

The column list is optional, if you don’t specify which columns you’re inserting data into, you must provide data for all columns.

For example, to insert a single row:

INSERT INTO users (user_name,user_phone) VALUES ("Joe Bloggs","555-1234");

Or in bulk:

INSERT INTO users (user_name,user_phone)
VALUES ("John Smith","555-5555"),("Tom Jones","555-0987");

Inserting in bulk like that is typically much quicker than using separate queries as the query planner only has to execute once, and any indexes are updated at the end.

UPDATE

UPDATE is the SQL statement for updating existing data in a table.
It should almost always be used with a conditional statement.
The standard syntax is:

UPDATE [TABLE] SET [COLUMN] = {expression}, {COLUMN2={expression}, ...}
[WHERE condition]
[ORDER BY ...]
[LIMIT count];

Without a WHERE condition, the statement will apply to all the rows in a table.

Here is a simple example of an UPDATE statement:

UPDATE users SET user_name = 'Jim Smith' WHERE user_name = 'James Smith';

DELETE

DELETE is the SQL statement for removing rows from a table.
The standard syntax is:

DELETE FROM [TABLE]
[WHERE condition]
[ORDER BY ...]
[LIMIT count] ;

Note

Without a WHERE condition the statement will apply to all the rows of a table.

Here is a simple example of a DELETE statement:

DELETE FROM users WHERE user_name = 'James Smith';

Pro Tips

	Before doing a write query, run it as a read query first to make sure you are retrieveing exactly what you want.
If your query is:

UPDATE users SET disabled=1 WHERE id=1;

Run this first to validate you will be affecting the proper record:

SELECT disabled FROM users WHERE id=1;

	use a LIMIT on UPDATE and DELETE FROM queries to limit damage imposed by an erroneous query

UPDATE users SET disabled=1 WHERE id=1 LIMIT 1;

DELETE FROM users WHERE id=1 LIMIT 1;

	If your database supports transactions, run START TRANSACTION first then run your query and check what it has done.
If you’re happy with what you see then run COMMIT and finally STOP TRANSACTION.
If you realize you’ve made a mistake, you can run ROLLBACK and any changes you’ve made will be
undone.

Databases 201

Database Theory

ACID

CAP theorem

High Availability

Document Databases

MongoDB

CouchDB

Hadoop

Key-value Stores

Riak

Cassandra

Dynamo

BigTable

Graph Databases

FlockDB

Neo4j

Application Components 201

Message Queue Systems

In a distributed system a Message Queue Systems can provide a basic infrastructure to higher level functions like

	decoupling processes or hosts from each other

	parallel processes execution

	distribute events and information like changes to data, entries from logfiles and statistics for monitoring and notification

	data-streaming and file-transfers to multiple hosts via multicast and unicast

	replace polling mechanism with an event orientated system

	network wide accessible job queues

	message rerouting on failure / escalation schemes

	verification of results (best of three)

	asynchronous remote procedure calls

	network wide mutex

	network or distributed system wide message bus

Message Queue Systems are more like peer2peer networks then client-server applications.
They can be split up into message brokers and routers or brokerless message queuing systems. [0MQ]
A message as understood by the system is everything that can be represented as a bytestream.
Properties like type and timestamp may are added to message. [Bok]

	Bok

	http://sardes.inrialpes.fr/papers/files/Bouchenak08a.pdf

	0MQ

	https://en.wikipedia.org/wiki/%C3%98MQ

Further Readings

	http://c2.com/cgi/wiki?MessageQueuingArchitectures

	https://en.wikipedia.org/wiki/Message-oriented_middleware and https://en.wikipedia.org/wiki/Message_oriented_middleware

	https://en.wikipedia.org/wiki/Queueing_theory

	https://en.wikipedia.org/wiki/Message_queue

	http://www.slideshare.net/mwillbanks/art-of-message-queues

Message Brokers

Message brokers represent a message queue systems that relies on a central system to route messages to its destination.
Messages are send to exchanges and received from queues.
Queues resists on the broker, also some protocols implement a client site queue for multipart transactions and prefetching.
Message Brokers tend to become a critical system in an otherwise distributed environment.

RabbitMQ

RabbitMQ [https://www.rabbitmq.com] is an open source Message Broker written in erlang.
Its queuing protocol is the Advance Message Queuing Protocol. [wiki] [specs]
It provides plugins for different queuing protocols like STOMP and advanced setups.
Installations scale from single host as an applicationmessagebus, to multi cluster installations in different networks.
Messages are send to different type of exchanges.
While Direct, Fanout, Topic and Header Exchanges are part of the core system, others plugins are rooted in the community.
No prior understanding of the erlang programming language is needed to setup, configure and operate the message broker.
The documentation on the projects homepage reads a fair amount of different configurations with explanations.

To setup a cluster a minimum of two nodes is required.
All nodes of a cluster must be in the same IP network segment.
It is possible to send huge messages via AMQP to a RabbitMQ node.
The maximum message size is limited by the amount of available RAM on the node.
Depending on the durability of a message and the policy of queues, the messages are synchronized to other nodes.
A disc-node ensures a message is stored to a disc before delivering.
Memory based nodes provide a much higher message throughput.
To establish an encrypted communication between nodes, IPSec or TLS can be used.
Authentication is possible via an internal database, LDAP, SASL and PKI client certificates.
With a PKI in place consumers and publisher can share the same authorization.
No preshared password among all processes is needed, but different private keys are mandatory.
This is accomplished by using the commonname of the dn in the x509 client certificate as username.
Different applications can be separated by the concept of virtual hosts in a similar way the Apache web server does.
Configuration is provided by webGUI or commandline tools.
Programming libraries and tools for a wide range of environments are available.

The installation from the Debian repository leads to a configuration with a single host.
Similar installation instructions are provided for Windows, Solaris and other operation systems.

curl 'https://www.rabbitmq.com/rabbitmq-signing-key-public.asc' | sudo apt-key add -
echo 'deb http://www.rabbitmq.com/debian/ testing main' | sudo tee /etc/sources.d/rabbitmq.list
sudo apt-get update
sudo apt-get upgrade
sudo apt-get install rabbitmq-server

To backup and restore configuration data the management plugin should be configured.

{ rabbitmq_management, [
 { listener, [{ port, 15672 },
 { ssl, true },
 { ssl_opts, [{ cacertfile, "/etc/ssl/certs/cacert.crt" },
 { certfile, "/etc/ssl/certs/node1.crt" },
 { keyfile, "/etc/ssl/private/node1.key" }]}
]} // configured listener
]} // configured rabbitmq_management
]. // EOC

rabbitmqadmin export rabbit.config
rabbitmqadmin -q import rabbit.config

Show a detailed report about queues, users and connections

rabbitmqctl report

	wiki

	https://en.wikipedia.org/wiki/AMQP

	specs

	http://www.amqp.org/resources/download

Apache ActiveMQ

Memory Caches

Memcached

Redis

Specialized Caches

Varnish

nginx+memcached

Load Balancing

Why do we use load balancers?

Scalability

The most basic scalability need is to allow one address handle a load that’s too much for one physical server.
A secondary scalability factor is offloading or reducing underlying tasks, such as SSL termination and re-using already-established TCP links between the load balancer and the servers to reduce the time taken to send data to the user.
Smart load balancers that are able to poll and react to client load can seamlessly distribute work among heterogeneous machines.

Reliability

Simple health checking alone increases reliability.
A load balancer that simply polls an endpoint like status/health can detect a machine or application that has failed and remove it from the pool of active servers.
More advanced health checking can remove partially failed systems that are exhibiting poor or intermittent performance.

Agility

A load balancer can assist in making application development faster too.
Load balancers could be configured to route requests using higher level information about the connection,
such as certain URLs served by certain types of servers,
or sending everybody who logs in as an employee to an internal staging server instead of production.
Finally, a load balancer permits various different strategies for introducing new deployments in stages.

Application implications

Backend

An application server behind a load balancer is typically referred to as a
“backend” or “backend server”.

Pools

A collection of backends is referred to as a pool.

Balancing algorithms

Session Affinity

Session affinity or session stickiness, is when the load balancer applies an
algorithm to the incoming connection to direct it to a single server. This
is typically done for HTTP applications by setting cookies. In general TCP
applications often use IP addresses to determine the server to direct
the connection to.

Local & ISP caching

SSL Termination and Offloading

SSL Termination is when the load balancer established an SSL connection
between the client and the load balancer and a non-encrypted connection between
the load balancer and backend server.

Terminating SSL on the load balancer eliminates the need to distribute your
certificate and key amongst all the servers. When using hardware load balancers
they typically have special hardware acceleration which is much more performant
compared to terminating connections on the backend server.

Balancing vs. Failover (Active / Passive)

Often load balancing is used as a high-availability technique, by allowing
multiple backends to service a request if one node should become unavailable. It
differs from failover configuration because all nodes generally participate in
servicing clients. In failover configurations a single (active) node handles all
requests until an issue arises, and the secondary (passive) node takes over all
of the incoming traffic. Failover configurations are usually not configured for
scaling purposes.

Health Checks

Most load balancers have some ability to test backend servers for availability,
these are called health checks. They can be as simple as whether hosts are
responding on the port the application is bound to, or complex configurations
that test special URIs, or response times. If a server fails a health check the
load balancer will temporarily remove the node from the pool, until it
successfully passes the health check.

Non-HTTP use cases

Native SMTP, or general TCP for things like RabbitMQ, MongoDB, etc

Software

Apache

Apache has the ability to load balance using mod_proxy_balancer, and mod_jk.

Mod_proxy_balancer is purpose-built load balancing solution. It supports the HTTP, FTP,
and AJP protocols. There is basic support for sessions stickiness’s, weighted round-robin,
and can remove unhealthy backends from the balancing pool. It lacks support for customizable
health checks, other TCP protocols. Support for AJP is provided by mod_proxy_ajp and support
for FTP is provided by mod_proxy_ftp.

Mod_jk supports the AJPv1.2 and AJPv1.3 protocols. It’s a purpose build connector to support
the Java application servers, like Apache Tomcat. It supports weighted round-robin, session
stickiness, session counting, traffic based routing, and backend busyness (server with the least
connections). It supports health checks using the method built into AJP protocol.

Nginx

Nginx reverse proxy implementation supports load balancing for HTTP, HTTPS, FastCGI, uwsgi, SCGI,
and memcached. The default method is round-robin, but session persistence/stickiness (ip_hash)
and least connections (least_conn) methods are available. Flags for weighted load balancing and passive
server health checks can also be set on any of the backends.

Nginx load balancing documentation [http://nginx.org/en/docs/http/load_balancing.html]

HAProxy

HAProxy is a general TCP load balancing server that is highly configurable. It
will generally support any TCP based protocol, and has special modes for HTTP,
RDP, MySQL, and Postgresql protocols. It has support for multiple types of
health check including URL based, traffic-based health, and external checks via
the httpchk options. It has several load balancing algorithms: round robin,
static round-robin, least connections, source hashing, URI hashing, URI
parameter, and RDP-cookie.

Hardware

BIG-IP

BIG-IP has purpose-built hardware load balancers. They support protocols in layers
2, 4, and 7 of the OSI model. They allow for very complex configurations, and
support writing special TCL programs to modify the load balancing behavior. The
product supports SSL termination and offloading, with additional licensing.

Netscaler

Multi-dc

Anycast

DNS GSLB

	A GSLB (Global Site Load Balancer) at the most simplistic level is a health
checking DNS server.

	Most often used to load balance between geographically dispersed data centers.

	Generally has health check mechanisms similar to load balancers which are used
to return an IP address (as part of the DNS lookup) of a host that is currently
available to service the request.

	Conceptually provides coarse-grained round robin and affinity balancing
algorithms by setting the time to live (TTL) of the DNS lookup for an
appropriate duration.

CDN’s

(cparedes: I’d argue that it’s valid in some contexts, depending on what
you’re load balancing)

Monitoring, Notifications, and Metrics 101

History: How we used to monitor, and how we got better (monitors as tests)

Perspective (end-to-end) vs Introspective monitoring

Metrics: what to collect, what to do with them

Common tools

Syslog (basics!)

Syslog-ng

Nagios

Nagios is a monitoring tool created by Ethan Galstad.
It was originally released as a opensource project named NetSaint in 1999.
Due to trademark issues it was later renamed Nagios.
Since then it has become one of if not the most common monitoring tool for production environments.

Nagios is primarily an alerting tool that will notify an administrator or group of administrators if a service enters a critical or warning state if desired.
It has a basic web interface that allows for acknowledgment of issues and scheduling downtime.

Nagios is highly configurable and extensible due to its reliance on external commands to perform almost every task.
For example, every availability test in Nagios is a standard executable, and notifications are generated by an external command.
Because of this Nagios does not restrict the administrator to using a particular language to extend the system, and often times plug-ins and tests are written in a variety of languages.

The feature set of Nagios is pretty extensive.
It supports service and host altering hierarchies via parenting, so you can reduce the number of alerts when a critical service or host fails.
It supports active and passive checks.
It has basic scheduling for on-call periods, and supports time periods in which you can disable alerting.

Since Nagios is so configurable, it can often be difficult to configure for the uninitiated.
It can use many files for configuration, and a single syntax error will prevent the system from starting.
Additionally, the open-source version does not natively support adding and removing hosts dynamically; the configuration needs to be modified, and the server reloaded to add or remove a host.

Graphite

Graphite [http://graphite.wikidot.com/] is an open-source monitoring tool that let’s you store time-series based data and graph them.

Graphite consists of three components:

	Carbon: A daemon which listens for time-series data.

	Whisper: Similar to RRD, it’s a time series database.

	Webapp: A Django based webapp which helps visualize beautiful graphs on the data collected.

Graphite does not collect metrics for you, however there are three methods using which you can send data to Graphite:

	PlainText

	Pickle

	AMQP

Apart from the out-of-box web-app that Graphite comes with you can even create your own applications on top of Graphite by retrieving data in form of JSON, CSV or raw-data format.

Ganglia

Ganglia [http://ganglia.info] is a highly scalable distributed monitoring solution for high performance systems like clusters and grids.

Ganglia leverages the following technologies:

	XML for data representation.

	XDR for compact and portable data transport.

	RRD for data-storage.

	PHP and RRDTool for data visualization.

Ganglia is organized using the following conventions:

	Grid: Consists of clusters.

	Clusters: Consists of hosts/nodes. This is a logical grouping of machines and metrics like database servers, qa servers, etc.

	Host/Node: Typically a machine/server.

Ganglia monitoring suite consists of three main components:

	gmond: Daemon which needs to sit on every single node which needs to be monitored, gather monitoring statistics, send as well as receive the stats to and from within the same multicast or unicast channel.

	gmetad: daemon that polls gmonds periodically and stores their metrics into a storage engine like RRD. It can poll multiple clusters and aggregate the metrics. It is also used by the web frontend in generating the UI.

	ganglia-web: It should sit on the same machine as gmetad as it needs access to the RRD files.

To get a feeling of what features Ganglia has, you can look at the demo at http://ganglia.wikimedia.org/latest/

Munin

RRDTool / cacti

Icinga

SNMP

Simple Network Management Protocol or SNMP, is a monitoring and management protocol.
It is the standard way of monitoring on switches, routers, and other networking equipment.
SNMP relies on an agents which when contacted by a management system return the information requested.
The data provided by the agent uses Object Identifiers or OIDs that provide information about the current system.
OIDs can contain anything from strings identifying information about the system, to total number of frames received by the Ethernet controller.
Devices and systems often are provided with MIBs or Management Information Base these help the management system identify the information contained in the OID.
Lastly, management systems request information by providing a community string, for example Public.
These community strings allow the agent to determine what information is appropriate to return to the requester, and whether the requesting system has read-only or read-write access.

There are three commonly used versions of the protocol, SNMPv1, SNMPv2c and SNMPv3.
SNMPv3 is the only cryptographically secure version of the protocol.
Most devices will have support at least two versions of SNMP.

Collectd

Collectd [https://collectd.org] collects system-level metrics on each machine.
It works by loading a list of plugins, and polls data from various sources.
The data are sent to different backend (Graphite, Riemann) and can be used to trigger alerts with Nagios.

Sensu

Sensu [https://github.com/sensu] was written as a highly configurable, Nagios replacement.
Sensu can be described as a “monitoring router”, since it connects check scripts across any number of systems with handler scripts run on one or more Sensu servers.
It is compatible with existing Nagios checks and additional checks can be written in any language similar to writing Nagios checks.
Check scripts can send alert data to one or more handlers for flexible notifications.
Sensu provides the server, client, API and dashboard needed to build a complete monitoring system.

Diamond

Diamond [https://github.com/BrightcoveOS/Diamond] is a Python daemon that collects system metrics and publishes them to Graphite (and others).
It is capable of collecting cpu, memory, network, i/o, load and disk metrics.
Additionally, it features an API for implementing custom collectors for gathering metrics from almost any source.

Logster

Logster [https://github.com/etsy/logster/] project was created at Etsy as a fork of ganglia-logtailer [https://bitbucket.org/maplebed/ganglia-logtailer] .

Logster is a utility for reading log files and generating metrics in:

	Graphite

	Ganglia

	Amazon CloudWatch

It is ideal for visualizing trends of events that are occurring in any type of logs:

	Application

	System

	Error logs

For example, you might use Logster to graph the number of occurrences of HTTP response code that appears in your web server logs.

Logster maintains a cursor, via logtail on each log file that it reads so that each successive execution only inspects new log entries.

A simple,1 minute crontab entry for logster would allow you to generate near real-time trends for anything you want to measure from your logs.

This tool is made up of a framework script, Logster, and parsing scripts that are written to accommodate your specific log format.

Sample parsers are included in the distribution, which essentially read a log file line by line, applying a regular expression to extract useful data from the lines you are interested in, and then aggregate that data into metrics that will be submitted to Ganglia or Graphite or Amazon CloudWatch.

Do take a look through the sample parsers [https://github.com/etsy/logster/tree/master/logster/parsers], which should give you some idea of how to get started writing your own.

Monitoring, Notifications, and Metrics 201

Dataviz & Graphing

Graphite, StatsD

What are Graphite and StatsD?

In order to understand what your application is doing and to get a better
overview over key functionality it is indispensable to gather metrics about
those areas. A popular combination to achieve this is StatsD [https://github.com/etsy/statsd/] with the
Graphite storage and graphing backend. This chapter will introduce those
tools, how to install and configure them and how they can be used to gather
insight into your application’s metrics.

Graphite

The Graphite project [http://graphite.wikidot.com/] is a set of tools for
collecting and visualizing data, all written in Python. It consists of a file
based database format and tools to work with it called whisper, a set of
network daemons to collect data - the carbon daemons - and a Django based
web application to display data.

Whisper database format

Graphite at its core uses a disk-based storage system called whisper. Every
metric is stored in its corresponding .wsp file. These are fixed sized
databases, meaning that the amount of data a file can hold is pre-determined
upon creation. In order to achieve this, every database file contains so
called archives which store (timestamp, value) pairs with varying
granularity and length. For example a possible archive setup could be to store
a data point every 10 seconds for 6 hours, after that store 1 minute data for a
week and for long time archival use a data point every 10 minutes for 5 years.

This means once your data is older than the time period stored in the archive,
a decision has to be made how to fit the data into the coarser slots in the
next archive. In our example setup when going from the highest precision (10
seconds) to the next archive (1 minute) we have 6 values at our disposal to
aggregate. The database can be configured to aggregate by average, sum, last,
max or min functions, which uses the arithmetic mean, the sum of all values,
the last one recorded or the biggest or smallest value respectively to fill the
value in the next archive. This process is done every time a value is too old to
be stored in an archive until it is older than the lowest resolution archive
available and isn’t stored anymore at all.

An important setting in this context is the x-files-factor you can set on
every database. This describes how many of the archives slots have to have a
value (as opposed to None which is Python’s NULL value and recorded
when no value is received for a timestamp) to aggregate the next lower archive
to a value and not also insert None instead. The value range for this
setting is decimal from 0 to 1 and defaults to 0.5. This means when we use the
default setting on our example archives, at least 3 of the 6 values for the
first aggregation and 5 of the 10 values for the second one have to have
actual values.

The disk format to store all this data is rather simple. Every file has a
short header with the basic information about the aggregation function used,
the maximum retention period available, the x-files-factor and the number of
archives it contains. These are stored as 2 longs, a float and another
long thus requiring 16 bytes of storage. After that the archives are
appended to the file with their (timestamp, value) pairs stored as a long
and a double value consuming 12 bytes per pair.

This design makes it possible to store a lot of datapoints relatively easy and
without consuming a lot of disk space (1 year’s worth of 1 minute data for a
metric can be stored in a little more than 6MB). But it also means that some
considerations about usage have to be made upfront. Due to the database’s
fixed size, the highest resolution archive should match the rate at which you
send data. If data is sent at lower intervals the archive ends up with a lot
of None values and if more than one metric are received for a timestamp,
the last one will always overwrite previous ones. So if a low rate of events
during some times is expected, it might make sense to tune down the
x-files-factor to aggregate even if only one of ten values is available. And
depending on the type of metrics (counters for example) it might also make
more sense to aggregate with the sum function instead of the default
aggregation by averaging the values. Thinking about this before sending
metrics makes things a lot easier since it’s possible to change these settings
afterwards, however to keep the existing data, the whisper file has to be
resized which takes some time and makes the file unavailable for storage
during that time.

In order to understand whisper files a little bit better, we can use the set
of scripts distributed with whisper to take a look at a database file. First
install whisper from the PyPi distribution:

% sudo pip install whisper

And create a whisper database with a 10 second retention for 1 minute by using
the whisper-create.py command:

% whisper-create.py test.wsp 10s:1minute
Created: test.wsp (100 bytes)

% whisper-info.py test.wsp
maxRetention: 60
xFilesFactor: 0.5
aggregationMethod: average
fileSize: 100

Archive 0
retention: 60
secondsPerPoint: 10
points: 6
size: 72
offset: 28

% whisper-fetch.py test.wsp
1354509290 None
1354509300 None
1354509310 None
1354509320 None
1354509330 None
1354509340 None

The resulting file has six ten second buckets corresponding to the retention
period in the create command. As it is visible from the whisper-info.py
output, the database uses default values for x-files-factor and aggregation
method, since we didn’t specify anything different. And we also only have one
archive which stores data at 10 seconds per value for 60 seconds as we passed
as a command argument. By default whisper-fetch.py shows timestamps as
epoch time. There is also --pretty option to show them in a more human
readable format, but since the exact time is not important all examples show
epoch time. For updating the database with value there is the handy
whisper-update.py command, which takes a timestamp and a value as
arguments:

% whisper-update.py test.wsp 1354509710:3
% whisper-fetch.py test.wsp
1354509690 None
1354509700 None
1354509710 3.000000
1354509720 None
1354509730 None
1354509740 None

Notice how the timestamps are not the same as in the example above, because
more than a minute has past since then and if we had values stored at those
points, they wouldn’t be show anymore. However taking a look at the
database file with whisper-dump.py reveals a little more information about
the storage system:

% whisper-dump.py test.wsp
Meta data:
aggregation method: average
max retention: 60
xFilesFactor: 0.5

Archive 0 info:
offset: 28
seconds per point: 10
points: 6
retention: 60
size: 72

Archive 0 data:
0: 1354509710, 3
1: 0, 0
2: 0, 0
3: 0, 0
4: 0, 0
5: 0, 0

In addition to the metadata whisper-info.py already showed, the dump
command also tells us that only one slot actually has data. And in this case
the time passed doesn’t matter. Since slots are only changed when new values
need to be written to them, this old value will remain there until then. The
reason why whisper-fetch.py doesn’t show these past values is because it
will only show valid data within a given time (default 24h) until max
retention from the invoked point in time. And it will also fetch the points
from the retention archive that can cover most of the requested time. This
becomes a bit more clear when adding a new archive:

% whisper-resize.py test.wsp 10s:1min 20s:2min
Retrieving all data from the archives
Creating new whisper database: test.wsp.tmp
Created: test.wsp.tmp (184 bytes)
Migrating data...
Renaming old database to: test.wsp.bak
Renaming new database to: test.wsp

% whisper-info.py test.wsp
maxRetention: 120
xFilesFactor: 0.5
aggregationMethod: average
fileSize: 184

Archive 0
retention: 60
secondsPerPoint: 10
points: 6
size: 72
offset: 40

Archive 1
retention: 120
secondsPerPoint: 20
points: 6
size: 72
offset: 112

% whisper-fetch.py test.wsp
1354514740 None
1354514760 None
1354514780 None
1354514800 None
1354514820 None
1354514840 None

Now the database has a second archive which stores 20 second data for 2
minutes and whisper-fetch.py returns 20 second slots. That’s because it
tries to retrieve as close to 24h (the default time) as possible and the 20
second slot archive is closer to that. For getting data in 10 second slots,
the command has to be invoked with the --from= parameter and an epoch
timestamp less than 1 minute in the past.

These commands are a good way to inspect whisper files and to get a basic
understanding how data is stored. So it makes sense to experiment with them a
bit before going into the rest of the Graphite eco-system.

The carbon daemons

In order to make whisper files accessible to be written to from other network
services, the Graphite project includes the carbon daemon suite. The suite
consists of a carbon-cache, carbon-relay and carbon-aggregator daemon,
which are all based on the Twisted framework for event-driven IO in Python.

The carbon-cache daemon is the most crucial of them as it provides the basic
interface to the whisper backend and a scalable and efficient way for a large
number of clients to store metrics. In order to minimize write delay for a big
number of metrics depending on the disk seek time (each metric has its own
file) the daemon employs queuing. Every metric has its own queue and an
incoming value for a metric gets appended to it. A background thread then
checks the queues for data points and writes them consecutively to the
storage file. This way cost of an expensive disk seek gets amortized over
several metric values that are written with one seek.

The daemon relies on two config files, carbon.conf for general
configuration and storage-schemas.conf for whisper storage configuration.
The general configuration file contains settings like network configuration
(carbon-cache can listen on different sockets like plain TCP and UDP or even
AMQP), cache sizes and maximum updates per second in its [cache] section.
These settings are very useful when tuning the carbon daemon for the hardware
it’s running on, but to get started the default settings from the example
config files will suffice. The storage schemas configuration file contains
information about which metrics paths are using which retention archives and
aggregation methods. A basic entry looks like this:

[default_1min_for_1day]
pattern = .*
retentions = 60s:1d

Each section has a name and a regex pattern which will be matched on the
metrics path sent. The pattern shown above will match any pattern and can be
used as a catch-all rule at the end of the configuration to match uncaught
metrics. The retentions section is a comma separated list of retention
archives to use for the metrics path in the same format that
whisper-create.py expects them.

In order to get a basic carbon cache instance running (default listener is TCP
on port 2003), install it from PyPi and copy the example config files:

% cd /opt/graphite/conf
% cp carbon.conf.example carbon.conf
% cp storage-schemas.conf.example storage-schemas.conf
% /opt/graphite/bin/carbon-cache.py start
Starting carbon-cache (instance a)

% netstat -an | grep 2003
tcp4 0 0 *.2003 *.* LISTEN

The default installation creates its directories in /opt/graphite but this
can also be changed within the configuration. After the carbon daemon has been
started, metrics can just be recorded by sending one or more values in the
format metric_path value timestamp\n:

% echo "test 10 1354519378" | nc -w1 localhost 2003
% whisper-fetch.py /opt/graphite/storage/whisper/test.wsp |
tail -n 3
1354519260 None
1354519320 10.000000
1354519380 None

All metrics paths that are sent are relative to the
/opt/graphite/storage/whisper directory and will be stored there. The
interface also supports sub folders, which can be created by separate the
metrics path with dots:

% echo "this.is.a.test 10 1354519680" | nc -w1 localhost 2003
% whisper-fetch.py /opt/graphite/storage/whisper/this/is/a/test.wsp| tail -n 3
1354519560 None
1354519620 None
1354519680 10.000000

This is all that’s needed to collect metrics over the network. As mentioned
before, the carbon suite contains two more daemons carbon-relay and
carbon-aggregator. These can be used to improve the performance of the
system under higher load.

carbon-relay acts as a router between different carbon-cache or
carbon-aggregator instances. The daemon reads the [relay] section of
the carbon.conf configuration file where the most important sections
are the interface and TCP port to listen to via the LINE_RECEIVER_*
settings, the DESTINATIONS property, a comma separated list of
ipaddress:port pairs of available carbon daemons and the type of relaying
to use. The carbon-relay can be operated in rule based or consistent
hashing based relaying mode. In the second case, consistent hashing is
employed to balance the metrics between available destinations. When using the
relay based approach, the relay daemon needs a relay-rules.conf
configuration file of the form:

[name]
pattern = <regex>
destinations = <list of destination addresses>

This follows the storage schema configuration file format and will route any
metric matching the pattern to the given destinations. There also has to be
exactly one section which additionally has the property default = true
which is used as the catch all rule if no other rule has matched a metric
path.

The Graphite web application

Normalizing the Metrics

To easily navigate within hundreds of metrics, it’s important to normalize the name. Here are a few naming schemes:

	<ENV>.<CLUSTER>.<SERVER>.metric

	<ENV>.<APPLICATION-TYPE>.<APPLICATION>.metric

	<ENV>.APPLICATIONS.EVENTS.<APP-NAME>.deploy

Here a couple rules to choose an appropriate scheme:

	always put the most common part on the left of the name

	differentiate them by type (e.g.: hosts / applications)

Of course, you’re free to adopt different schemes. The most important
rule is to be consistent when naming your metrics.

To achieve this, a common solution is to have a small proxy between
the tool reporting metrics and Graphite. This could be an HTTP proxy
(like documented by Jason Dixon [http://obfuscurity.com/2012/05/Organizing-Your-Graphite-Metrics],
or a simple script that listens on a port, and rewrites the metric.

Using this pattern, you’ll get more control over the format and paths
chosen by developers or operations.

StatsD

StatsD [https://github.com/etsy/statsd/] is a network daemon
listening for statistics and sends the aggregation to a backend. In
our case we will see how it works with Graphite.

Setting it up and make it show pretty graphs

StatsD is a simple daemon listening for metrics. The first
implementation was done by Etsy, and is written for node.js [http://nodejs.org]. but other implementation exists (Python [https://github.com/sivy/py-statsd], Ruby [https://github.com/fetep/ruby-statsdserver], C [https://github.com/armon/statsite], etc).

To install the one by Etsy, you will need to install node.js (if it’s
not packaged for your OS, you can follow the instructions [https://github.com/joyent/node/wiki/Installation]). Then, to
actually run StatsD:

% git clone git://github.com/etsy/statsd.git
% cd statsd
% $EDITOR /etc/statsd/config.js
% node stats.js /etc/statsd/config.js

A basic configuration file will be similar to this:

{
 graphitePort: 2303,
 graphiteHost: "localhost",
 port: 8125,
 graphite: {
 legacyNamespace: false,
 prefixTimer: "aggregate",
 globalPrefix: ""
 }
}

Concepts

StatsD listens on the UDP port 8125 for incoming statistics. As for
Graphite, the protocol is line based. You send a string similar to
name:1|c. The first element (name) is the name of the statistic,
the colon acts as a separator with the value (1), and the pipe
separates the value with the type (c, for counter).

StatsD stores statistics in buckets. A value is attached to the
statistic, and periodically (by default it’s every 10 seconds), the
statistics are aggregated and send to the backend.

A few types are supported, and we will now see them in detail.

Counter

The counter is the most basic type.

% echo "my.statistic:1|c" | nc -w 1 -u localhost 8125

This will add 1 to the statistic named “my.statistic”. After the
flush the value for this statistic will be 0. It’s also possible to
specify to statsd that we are sampling:

% echo "my.statistic:1|c|@0.1" | nc -w 1 -u localhost 8125

Timing

% echo "my.timer:43|ms" | nc -w 1 -u localhost 8125

This type is somewhat mis-named, since you can report more than time
based metrics. You give it times in milliseconds, and it will compute
the percentiles, average, standard deviation, sum, lower and upper
bounds for the flush interval.

Gauges

Gauges are arbitrary values.

% echo "my.statistic:23|g" | nc -w 1 -u localhost 8125

Gauges can be useful when you have a script that runs periodically and
you want to report a value (e.g: count the number of rows in a
database). The number is final, there’s no additional processing.

However, there’s a few things to know about gauges:

	if you send multiple values for the same gauge between 2 flushes,
only the most recent one will be kept

	if you’re sending a gauge for the same metric from two different
places, only one of them will be kept

	if there’s no new value during the time period, it will send the
one from the previous period to Graphite

Sets

Schema

When using graphite, you have to be sure that the smallest time
retention in Graphite is the same as the interval between two flushes
in StatsD. If you’re sending to Graphite two data points in the same
time period, it will overwrite the first one.

Management interface

A management interface is listening (by default) on the TCP port 8126.
A few commands are supported:

	stats will output statistics about the current process

	counters will dump all the current counters

	timers will dump all the current times

The stats output looks like this:

% telnet localhost 8125
stats
uptime: 334780
messages.last_msg_seen: 0
messages.bad_lines_seen: 1590
graphite.last_flush: 9
graphite.last_exception: 334780
END

Where:

	uptime is the number of seconds elapsed since the process
started

	messages.last_msg_seen is the number of seconds since the last
message received

	messages.bad_lines_seen is the number of badly formatted line
received

	graphite.last_flush is the number of seconds elapsed since the
last flush to Graphite

	graphite.last_exception is the number of seconds elapsed since
the last exception thrown by Graphite while flushing

What have we done and where to go from here

This list is a suggestion of things you can collect and measure.

Events

Every time you push an application or use your configuration manager
to push changes, you could send an event to statsd. Something as
simple as

% echo "<ENV>.APPLICATIONS.EVENTS.<APP-NAME>.deploy:1|c" | nc -w 1 -u localhost 8125

Now, in graphite, you can use the formula drawAsInfinite to
represent this event as a vertical line.

Caveats

Size of the payload

When you’re sending statistics to StatsD, you have to be careful about
the size of the payload. If the size is greater than your network’s
MTU, the frame will be dropped. You can refer to this
documentation [https://github.com/etsy/statsd/#multi-metric-packets]
to find the size that might work best for your network.

Dashboard: Info for ops and info for the business

Tasseo

Tasseo [https://github.com/obfuscurity/tasseo] is a Graphite
specific live dashboard. It is lightweight, easily configurable and
provides a near-realtime view of Graphite metric data. It is a ruby
based Sinatra [http://www.sinatrarb.com/] and javascript application.

Dashing

Dashing [http://shopify.github.com/dashing/] is a dashboard
framework allowing you to build your own custom dashboards. Dashboards
can be created with premade widgets, or custom widgets can be written
using scss, html and coffeescript. Data bindings allow reuse and
manipulation of data from a variety of sources.

GDash

GDash [https://github.com/ripienaar/gdash] is another dashboard for
Graphite. Dashboards are created using a simple DSL [https://github.com/ripienaar/graphite-graph-dsl/wiki].

Third-party tools

Datadog

Boundry

NewRelic

Librato Metrics

Circonus

Geckoboard

Business Continuity Planning

	Backups
	Designing a backup policy

	Designing a Backup System

	Verification

	Security implications

	Recovery basics

	Secure data destruction

	Information Lifecycle Management in relation to backups

	Outages

	Postmortems

	Disaster Recovery
	Planning

	Execution

Backups

Backups are a critical part of preserving an organization’s
information. RAID, clustering and other real-time copies of
data do not help when the data is deleted, the buildings containing
these live sources are compromised by weather, human intervention,
or facilities failures.

Could the organization survive if part or all of its information
were lost?

Remember, RAID is not a backup solution.
RAID protects against the loss of individual drives, but if data gets corrupted
or deleted, RAID will replicate that corruption across all RAID stripes.
Making backups on separate media is the best way to protect yourself against
both “hard” and “soft” data loss.

Designing a backup policy

Operations needs to work with organizational leaders to develop a
backup policy that protects the organization’s information while
balancing cost and other factors important to the organization.

Operations engineers need to be able to understand organizational
needs in order to evaluate backup solutions, strategies, and current
best practices. They must then translate this knowledge into
recommended solutions which management can use to make a sound
business decision. The ability to assemble a cohesive plan, including
a cost-benefit analysis of available options, can help the organization
make the right decision for the business on an appropriate backup
policy.

Deciding what to backup

Consider cost, time, and staff resources when deciding what to
backup. Does it make sense to backup every client hard drive when
a system can be re-imaged over the network? Does the configuration
management solution maintain client customizations? If so, operations
may not need to backup the operating system on clients and can focus
on user data. Ideally, the goal is not to restore clients starting at
the operating system level.

Where is organizational data stored? Is data local on each client or
does the organization use a file server? Do users actually
store their data on the file server? Some users have had bad experiences
using the network and move all of their data locally, or refuse to
store anything on the server in case the network becomes unavailable.
If users travel frequently, they may store all of their data
on a laptop. This poses additional backup challenges when laptops
are not always on the organization’s network to talk to the backup
server.

Some organizations perform incremental backups on all clients to
protect against users who decide where best to store their data.

What about data stored on servers? Do all servers need to be backed
up? What is the available backup window and will the organization’s
network push enough data to a backup server to fit within that
window? How will taking the backup affect each application’s
performance?

Ultimately, deciding what to backup is a business decision. What
information is critical to the business and how much is the
organization willing to invest to protect that information? There
may also be laws requiring the organization to retain certain data
that will influence this decision.

When not to backup

Todo

restoring? what not to backup, regulations on same, how to store them (PCI)

Retention periods

Is there a risk to having a long retention period?

Todo

The idea of such a risk may not be immediately clear to a beginning ops person.

What is the cost to retain backups for a 30-days, 6-months, or 1 year?

Is there a business requirement for keeping backups for a specific length of time?

Are there laws for maintaining electronic records for a specific period of
time?

If the organization is required to adhere to Freedom of
Information Act (FOIA) law, sometimes long retention periods are a
detriment. FOIA requests can cover any kind of data including
individual emails on a specific subject. If the information doesn’t
benefit the organization, then it might be a liability due to
labor-intensive searches through ancient backups.

Todo

How does FOIA affect what information an organization needs to have available? Assume the reader is a civilian and doesn’t know how FOIA affects an organization.

Offsite backups

How sensitive is the organization’s information? Storing a copy
of the organization’s crown jewels in an insecure location can
expose the organization to loss, unauthorized modification, or
theft of intellectual property.

Is the organization required to encrypt offsite data?

Does the organization have a second geographically distributed
location that could house an off-site backup of the organization’s
information?

Designing a Backup System

Backup type and frequency

What kind of information does the organization rely on to do
business? Do hourly changes need to be captured or can the
organization survive with backups every 12-hours or once per day?

	Full backups

	Incremental backups

	Replication

	Snapshots

	Bare-metal restore vs data only

	online/offline

Todo

media – should someone address the state of backup media? Some places are still doing tape. What about orgs who rely on standalone consumer-grade disks for client backups (e.g. Time Machine)? Risks, cost to maintain.

Cost of backups

What is the cost of not doing backups?

Verification

Test backups. If data cannot be restored then what was the
point of backing it up in the first place.

Recovery testing

How long does it take to restore the largest backup set?

Integrity of backups

Completeness of backups

Security implications

Todo

Using backups to restore to a known “good” state after an incident just serves to put the machine in a known vulnerable state (security hole that was exploited is now back in operation)

Todo

can be used to restore system state that can be useful in a post mortem after an incident (say the attacker covered their tracks but backups were able to capture a rootkit before it was removed or before logs were tampered with)

Recovery basics

Secure data destruction

Information Lifecycle Management in relation to backups

Main goal of backups is restore system state including data in case of issues and ILM, have data available for functional
reasons other than uptime.

Main items to cover in this chapter are:

Archiving

Data replication

Outages

When outages happen (and they will) it is incredibly useful to have a point person that will handle communications while the admin focuses on resolving the issue.
A common communication forum (conference call, irc, etc) that affected users can jump in get a quick status and pass along any information is useful.
On a larger scale you would want to have a status page that is constantly updated.

Once an outage takes place as an Admin you have to primary functions:

	Restore service.

	Document what caused the failure.

Depending on the failure and the impact #2 may actually be more important than #1.
Assuming you have a proper DEV / QA / PROD / DR environment setup you should fail over to your DR systems.
Then take your time investigating the PROD systems to identify root cause (and build a test so you can replicate the problem at will) and come up with a proper resolution that can be documented and isn’t considered a “band-aide” fix.
Apply the change up through DEV & QA and the then to your PROD, assuming all goes well fail back from DR and run your replicated failure test to show PROD isn’t going to fail from that issue again.
Then you are safe to make the change on your DR side.

Post-outage you need to document what the problem was, what the root cause was, and what the steps were to fix.
Depending on who your users are you may wish to provide this information to them as well to keep the informed.

Postmortems

Disaster Recovery

Disaster Recovery is a process for securing business continuity in the event of a disaster.
The severity of the disaster may differ, as well as how to resolve it.
However, the goal for a Disaster Recovery, or the Disaster Recovery Plan should always be to get to the state of business as usual as soon as possible.

Planning

The most important thing about Disaster Recovery is preparation and planning.
This is because when a disaster actually happens, you will not be able to change any prerequisites but are forced to work with what you already have.
If your plan was broken or didn’t actually address all the critical aspects of your IT, your Disaster Recovery-environment will end up broken as well.
A misconfigured backup job can always be reconfigured during normal operations but when the environment is already down; that ship has sailed.

To make sure we cover those needs we will split this section into a couple of subsections.

Business Needs

The first question we need to ask ourselves when creating a Disaster Recovery Plan, or DRP, is what the needs of the business actually is.
In most cases, an organization has some sort of critical infrastructure or systems that need to be available at all time to be able to perform the core business.
This might be an Enterprise Resource Management-system (ERP), a document collaboration or versioning system, production system etc.

The size of the organization as well as the grade of information technology adaptation all need to be taken into consideration when creating a plan for Disaster Recovery.

Defining these business needs can’t be the sole work of the IT Department or an Operations Engineer.
It needs attention from all levels of the organizational hierarchy.
One method for identifying the needs might be interviews with colleagues that work in the core business.

Questions that need to be answered by every role in the core process(es):

	In your every day work, what activities do you need to be able to perform to fulfill the goals of your role?

	How do you do these?

Using the answers to the questions, we then need to identify each system or infrastructural component that is needed to realize that goal.
The identified objects gives us a list of what we actually need to secure in the case of a real disaster.

This can be done in many ways, for example:

	Backup/Restore

	Data Mirroring

	Off-Site Mirrored environment

	Failover

So, if we were to create a disaster recovery plan for Acme Inc, we would first need to identify what components we need to consider putting into the DRP.
Usually, you have some kind of system (or excel spreadsheet for smaller companies) containing all the IT environment components.
If so, this information will make your work a lot easier.

The components may contain, among other things:

	SQL Servers (sql-srv-001 and sql-srv-002)

	Domain Controllers (dc-srv-001 - primary, dc-srv-002 & dc-srv-003 - used for load balancing)

	Fileservers (stgsrv001)

	Application servers (app-srv-001, app-srv-002)

We will then, together with the rest of the organization, try to map these components to the bussiness activities we’ve identified earlier.
For example:

	The application server app-srv-001 is running our ERP, which is needed to be able to place orders from customers.

	The SQL Server sql-srv-001 contains the data from the ERP which means that it’s a prerequisite for the application server.

	The domain controller is needed so the users are able to sign in to the ERP. However, since 002 and 003’s main purposes is load balancing, recovering dc-srv-001 will be our main objective.

	The fileserver stg-srv-001 is used to store copies of the order receipts produced in the ERP.

What we’ve concluded from this activity is that we need to recover four components to be able to use the ERP.
Note however, that in reality, the IT environment’s usually alot more complex then the one used in this example.

The identified objects then need to be ranked to determine in what order they need to be recovered to minimize downtime.
In this example, this would most likely be as follows:

	dc-srv-001

	sql-srv-001

	stg-srv-001

	app-srv-001

Prioritizing Recovery Components

In the example above, the number of assets to prioritize is low, which might suggest that there is no need for making a priority list.
However, one thing that you’ll learn by doing a couple of disaster recovery excercises is that no matter how small the scope, stakeholders will always try to direct your effors to the assets mosts relevant to them.
For example, the CEO might want you to prioritize the ERP System over the Domain Controller, which might very well be correct, but as the list of assets grow longer the number of stakeholders wanting to influence your decisions will as well.

As you might have guessed, it may be a good idea to actually prioritize your asset list, if not out of necessity then at least to circumvent any issues that might occur because of differing opinions on what needs to be prioritized.
A great way to start out is to create a spreadsheet consisting of the following columns:

	
	Asset Identification

	A name, a FQDN or an IP.
Whatever helps you identifying the asset.

	
	Business Priority

	Non-Essential, Essential, Critical.
This should be decided by either the board or the senior management team.

	
	Tiebreaker/Sequential numbering

	A sequential numbering which will break ties in case multiple assets have the same priority.
Should also be decided by the board or the senior management team.

	
	Business Impact

	A textual description of what would happen if this asset where to be unavailable.

	
	Exceptions

	Any exceptions to the priority above.
A company that is doing billing once every month might not feel that the billing system is critical during any other period then the billing period.
This will of course reflect your real time prioritization if (when) a disaster occurs.

The finished product should, after a signoff from your department manager and the senior management team, be published on your company’s intranet, available for anyone.
This is very important as lack of transparency is one of the most common prejudices about IT Departments.

Todo

shared resources, bussiness needs.

Disaster Recovery Plans

Todo

How to create a plan from the material we gathered in the planning phase.

Todo

Pros and cons on separating the disaster recovery manual from the technical recovery manual.

Disaster Recovery Simulations

Todo

Strategies when simulating. Defining testing scopes. Measuring.

Considerations

Todo

Limiting the scope to core business

Todo

Expanding the scope in the disaster recovery environment vs. going back to production before expanding

Execution

Todo

Communication

Architecture 101

How to make good architecture decisions

Patterns and anti-patterns

Introduction to availability

Introduction to scalability

Architecture 201

Service Oriented Architectures

Fault tolerance, fault protection, masking, dependability fundamentals

Fail open, fail closed

Perspective: node, network, cluster, application

Caching Concerns

Static assets

Data

Eviction and replacement policies and evaluation

Approaches

(TTL, purge-on-write, no-purge versioning, constantly churning cache versus
contained, working set sizing)

Crash only

Synchronous vs. Asynchronous

Business continuity vs. Disaster Recovery

Designing for Scalability: Horizontal, Vertical

Simplicity

Performance

Tiered architectures

MTTR > MTBF

http://www.kitchensoap.com/2010/11/07/mttr-mtbf-for-most-types-of-f/

Configuration Management 101

A Brief History of Configuration Management

Configuration management as a distinct sub-discipline of operations engineering
has roots in the mid-1990s. Prior to then, even sites with a large number of
users like universities and large ISPs had relatively few Unix systems. Each of
those systems was generally what today’s operations community calls a
“snowflake system” (after the phrase “a precious and unique snowflake”). They
were carefully hand-built to purpose, rarely replaced, and provided a unique
set of services to their users.

The rise of free Unix-like Operating Systems and commodity x86 hardware, coupled with the
increasing demands to scale booming Internet services meant the old paradigms
of capturing configuration were no longer adequate. Lore kept in text files,
post-bootstrap shell scripts, and tales told around the proverbial campfire
just didn’t scale. Administrators needed automation tools which could stamp
out new machines quickly, plus manage configuration drift as users made changes
(deliberately or accidentally) that affected the functioning of a running
system.

The first such tool to gain prominence was CFEngine, an open-source project
written in C by Mark Burgess, a CS professor at Oslo University. CFEngine
popularized the idea of idempotence in systems administration tasks,
encouraging users to describe their system administration tasks in ways that
would be convergent over time rather than strictly imperative shell or perl
scripting.

Todo

a specific example of convergent over time might help

In the early 2000s, the systems administration community began to focus more
intensely on configuration management as distributed systems became both more
complex and more common. A series of LISA papers and an explosion in the number
and sophistication of open-source tools emerged. Some highlights and background
reading:

	Steve Traugott’s isconf3 system and paper “Bootstrapping an
Infrastructure” [http://www.infrastructures.org/papers/bootstrap/bootstrap.html] provided a
concrete model for repeatable, scalable provisioning and config management.

	CERN released and wrote about Quattor [http://quattor.org/index.html]
which they used to build and administer high-performance compute clusters at
larger scale than most sites at the time had dealt with.

	Alva Couch from Tufts University and Paul Anderson from University of
Edinburgh, laid out theoretical underpinnings for configuration management
in a joint session at LISA‘04 [http://static.usenix.org/event/lisa04/tech/talks/couch.pdf]

	Narayan Desai’s bcfg2 system [http://bcfg2.org] provided a hackable Python
CM project with early support for advanced features like templating and
encrypted data

	Recapitulating Luke Kanies’ departure from cfengine [http://rootprompt.org/article.php3?article=10981] to start Puppet, Adam
Jacob created Chef in 2008 to address fundamental differences [http://www.akitaonrails.com/2009/11/18/chatting-with-adam-jacob] with
Puppet (primarily execution of ordering and writing user code in Ruby vs a
DSL).

By 2008, provisioning and configuration management of individual systems were
well-understood (if not completely “solved” [http://blog.lusis.org/blog/2011/08/22/the-configuration-management-divide/])
problems, and the community’s attention had shifted to the next level of
complexity: cross-node interactions and orchestration, application deployment,
and managing ephemeral cloud computing instances rather than (or alongside)
long-lived physical hardware.

A new crop of CM tools and approaches “born in the cloud” began to emerge in
the 2010s to address this shift. SaltStack, Ansible, and Chef-v11 built on
advances in language (Erlang and Clojure vs Ruby and Python), methodology
(continuous deployment and orchestration vs static policy enforcement), and the
component stack (ZeroMQ and MongoDB vs MySQL).

Whatever specific configuration management tooling operations engineers
encounter as an operations engineer, ultimately the technology exists to enable
business goals – short time-to-restore in the face of component failure,
auditable assurance of control, low ratio of operators per managed system, etc.
– in a world whose IT systems are moving, in the words of CERN’s Tim Bell,
“from pets to cattle”.

Idempotence

Convergent and Congruent systems

Direct and Indirect systems: ansible, capistrano

(mpdehaan: Are we talking about deployment here? Then let’s start a deployment section. What does direct/indirect mean? How about not addressing tools in 101 and talking about concepts, so as to make a better tools section? Ansible operates in both push and pull topologies, so I’m guessing that is not what is meant about direct/indirect?)

Chef

Chef (adam: I’m biased here, but I would do Chef in 101, puppet and cfengine in
201, but it’s because I want junior admins to get better at scripting, not just
because I’m a dick.)
(Magnus: this goes back to why Ruby will be so much more for new guys coming in
today like Perl was for a lot of us in the 90’s)

Configuration Management 201

Ansible

Ansible [http://ansible.com] is a configuration management, deployment, and remote execution tool that uses SSH to address remote machines (though it offers other connection types, including 0mq). It requires no server software nor any remote programs, and works by shipping small modules to remote machines that provide idempotent resource management. While implemented in Python, Ansible uses a basic YAML data language to describe how to orchestrate operations on remote systems.

Ansible can be extended by writing modules in any language you want, though there is some accelerated module writing ability that makes it easier to do them in Python.

To prevent documentation drift, see Ansible documentation site [http://docs.ansible.com].

Puppet

As system administrators acquire more and more systems to manage, automation of mundane tasks is increasingly important.
Rather than develop in-house scripts, it is desirable to share a system that everyone can use, and invest in tools that
can be used regardless of one’s employer. Certainly doing things manually doesn’t scale.

This is where Puppet comes to rescue. Puppet is a Configuration Management Tool. It is a framework for Systems Automation.
An OpenSource software written in Ruby that uses Declarative Domain Specific Language (DSL).

Puppet usually uses an agent/master (client/server) architecture for configuring systems, using the Puppet agent and Puppet master applications.
It can also run in a self-contained architecture, where each managed server has its own complete copy of your configuration information and
compiles its own catalog with the Puppet apply application.

Puppet Agent/Master Communication

Before being applied, manifests get compiled into a document called a “catalog”, which only contains resources and hints about the order to sync them in.
With puppet apply, the distinction doesn’t mean much.

In a master/agent Puppet environment, though, it matters more, because agents only see the catalog.

Running Puppet in agent/master mode works much the same way, the main difference is that it moves the manifests and compilation to the puppet master server.
Agents don’t have to see any manifest files at all, and have no access to configuration information that isn’t in their own catalog.

How Do Agents Get Configurations ?

Puppet’s agent/master mode is pull-based. Usually, agents are configured to periodically fetch a catalog and apply it, and the master controls what goes into that catalog.

By using this logic, manifests can be flexible and describe many systems at once. A catalog describes desired states for one system.
By default, agent nodes can only retrieve their own catalog and they can’t see information meant for any other node. This separation improves security.

This way, one can have many machines being configured by Puppet, while only maintaining our manifests on one (or a few) servers.

Installation

Puppet has an installing puppet page [http://docs.puppetlabs.com/puppet/latest/reference/install_pre.html] on how to get it installed and ready to use,
please refer to it after deciding what OS and deployment type to use.

The examples shown here use CentOS installation with standalone architecture and Puppet apply application.

Manifests

Puppet programs are called “manifests”, and they use the .pp file extension. These programs comprise of resource declarations, described below.

Resources

System’s configuration can be imagined as a collection of many independent atomic units, called “resources”.

Example of puppet resouces can be a specific file, a directory, a service.

Anatomy of a Resource

In Puppet, every resource is an instance of a resource type and is identified by a title, it has a number of attributes (which are defined by the type),
and each attribute has a value.

Puppet uses its own language to dsecribe and manage resources:

type { 'title':
 argument => value,
 other_arg => value,
}

This syntax is called a resource declaration.

Example of file resource type.

file{ '/tmp/example':
 ensure => present,
 mode => '600',
 owner => 'root',
 group => 'hosts',
}

Resource Type

As mentioned above, every resource has a type.

Puppet has many built-in resource types, and you can install even more as plugins.
Each type can behave a bit differently and has a different set of attributes available.

The full list of different puppet resource types can be found at the Puppet Type Reference [http://docs.puppetlabs.com/references/latest/type.html].

Puppet Apply

It is used below to test small manifests, but it can be used for larger jobs too. In fact, it can do nearly everything an agent/master Puppet
environment can do.

‘apply’ is a Puppet subcommand. It takes the name of a manifest file as its argument, and enforces the desired state described in the manifest.

Try applying the short manifest above:

puppet apply /root/examples/file-1.pp
notice: /Stage[main]//File[testfile]/ensure: created
notice: Finished catalog run in 0.05 seconds

Package/File/Service

The package/file/service pattern is one of the most useful idioms in Puppet. This is a pattern constantly seen in the production Puppet code.

Below is an example of a manifest that uses this pattern to install and configure ssh for Enterprise Linux - based Linux systems.

package { 'openssh-server':
 ensure => present,
 before => File['/etc/ssh/sshd_config'],
}
file { '/etc/ssh/sshd_config':
 ensure => file,
 mode => 600,
 source => '/root/examples/sshd_config',
}
service { 'sshd':
 ensure => running,
 enable => true,
 subscribe => File['/etc/ssh/sshd_config'],
}

The package resource makes sure the software and its config file are installed, the config file depends on the package package resource, and
the service subscribes to the changes in the config file.

CFEngine 3

“In 2008, after more than five years of research, CFEngine 3 was introduced, which incorporated promise theory as ‘a way to make CFEngine both simpler and more powerful at the same time’, according to Burgess.”
https://en.wikipedia.org/wiki/CFEngine

“If you are looking for a fast and highly scalable configuration management tool for your IT infrastructure, you should give CFEngine a try.
Though the functionality it offers is quite similar to that offered by other popular tools such as Puppet and Chef, CFEngine has a much smaller footprint, both in terms of memory and CPU utilization, and is generally faster because it is written in C and thus runs natively on the OS.”,
CFEngine tutorial on DigitalOcean.com [https://www.digitalocean.com/community/tutorials/how-to-install-and-use-cfengine-community-edition-on-ubuntu-14-04]

To learn more see:
CFEngine Primer [https://digitalelf.net/cf-primer/],
CFEngine Tutorial [http://www.cfenginetutorial.org/],
CFEngine Learning Center [https://cfengine.com/learn/],

SaltStack

SaltStack or just Salt, is a configuration management and remote
execution tool written in Python. Salt uses ZeroMQ to manage communication
between master and minions, and RSA keys to handle authentication.
This chapter will explain the basics on how to get started with it.

Salt is a centralized system, which means there is a main server (also referred
here as master) which manages other machines connected to it or itself (also
referred here as minions). This topology can be further split using
Salt Syndic [http://docs.saltstack.org/en/latest/ref/syndic.html],
please refer to Salt documentation for more details on this topic.

In examples below we will be using the master + 1 minion setup. The approximate
time you will need to work through all the content is about 10 minutes.

Prerequisites:

	access to 2 Linux/Solaris/FreeBSD/Windows machines in the same network

	basic understanding of command line instructions

	basic understanding of YAML file format

Installation

Salt has a dedicated page [https://repo.saltstack.com/]
on how to get it installed and ready to use, please refer to it after deciding
what OS you will be using. These examples are shown on an Ubuntu installation
with Salt installed from a project personal package archive [https://repo.saltstack.com/#ubuntu].

To set-up the environment you can use virtual machines or real boxes, in the
examples we will be using hostnames master and slave to refer to each
one.

At this point, you should install the latest version on both machines with the
directions provided above, and have a command line session open on both your
master and slave machines.
You can check what version are you using on master with:

root@master:~# salt --version
salt 0.10.3

and on slave with:

root@slave:~# salt-minion --version
salt-minion 0.10.3

Configuration

A minimum configuration is required to get the slave server to
communicate with master. You will need to tell it what IP address and port
master uses.
The configuration file can typically be found at /etc/salt/minion.

You will need to edit the configuration file directive master: salt replacing
salt with master IP address or its hostname/FQDN.

Once done, you will need to restart the service: salt-minion. On most
Linux distributions you can execute service salt-minion restart to restart
the service.

Authentication keys for master/slave are generated during installation so
you don’t need to manage those manually, except in case when you want to
preseed minions [https://salt.readthedocs.org/en/latest/topics/tutorials/preseed_key.html].

To add the slave to minions list, you will have to use the command salt-key
on master. Execute salt-key -L to list available minions:

root@master:~# salt-key -L
Unaccepted Keys:
slave
Accepted Keys:
Rejected:

To accept a minion, execute salt-key -a <minion-name>:

root@master:~# salt-key -a slave
Key for slave accepted.

root@master:~# salt-key -L
Unaccepted Keys:
Accepted Keys:
slave
Rejected:

Once the minion is added, you can start managing it by using command salt.
For example, to check the communication with slave, you can ping the slave from the master:

root@master:~# salt 'slave*' test.ping
slave: True

Remote execution

In order to understand how Salt does its configuration management on minions,
we’ll take look at the salt command line tool. Let’s take our
previous command and inspect the parts of the command:

root@master:~# salt 'slave*' test.ping
 ^ ^
 ______| |__________________
 target function to execute

target is the minion(s) name. It can represent the exact name or only
a part of it followed by a wildcard. For more details on how to match minions
please take a look at Salt Globbing [http://docs.saltstack.org/en/latest/topics/targeting/globbing.html].

In order to run target matching by OS, architecture or other identifiers
take a look at Salt Grains [https://salt.readthedocs.org/en/latest/topics/targeting/grains.html].

Functions that can be executed are called Salt Modules.
These modules are Python or Cython code written to abstract access to CLI or
other minion resources. For the full list of modules please take a look
this page [https://salt.readthedocs.org/en/latest/ref/modules/all/index.html].

One of the modules provided by Salt, is the cmd module. It has the run
method, which accepts a string as an argument. The string is the exact
command line which will be executed on the minions and contains both
the command name and command’s arguments. The result of the command execution
will be listed on master with the minion name as prefix.

For example, to run command uname -a on our slave we will execute:

root@master:~# salt slave cmd.run 'uname -a'
slave: Linux slave 2.6.24-27-openvz #1 SMP Fri Mar 12 04:18:54 UTC 2010 i686 GNU/Linux

Writing configuration files

One of the Salt modules is called state. Its purpose is to manage minions
state.

Salt configuration management is fully managed by states, which purpose is
to describe a machine behaviour: from what services are running to what
software is installed and how it is configured. Salt configuration management
files (.sls extension) contain collections of such states written in YAML
format.

Salt states make use of modules and represent different module calls organised
to achieve a specific purpose/result.

Below you can find an example of such a SLS file, whose purpose is to get
Apache Web server installed and running:

install_apache:
 pkg:
 - installed
 - name: apache2
 service:
 - running
 - name: apache2
 - watch:
 - pkg: apache2

To understand the snippet above, you will need to refer to documentation on
states: pkg and service. Basically our state calls methods pkg.installed
and service.running with argument apache2. The watch directive is
available for all states and creates a dependency, as well as restarts the
apache2 service if the apache package changes or gets updated.

Back to state module, it has a couple of methods to manage these states. In
a nutshell the state file form above can be executed using state.sls
function. Before we do that, let’s take a look where state files reside on
the master server.

Salt master server configuration file has a directive named file_roots,
it accepts an YAML hash/dictionary as a value, where keys will represent the
environment (the default value is base) and values represent a set/array
of paths on the file system (the default value is /srv/salt).

Now, lets save our state file and try to deploy it.

Ideally you would split state files in directories (so that if there
are also other files, say certificates or assets, we keep those organised). The
directory layout we will use in our example will look like this:

/srv/salt/
|-- apache
| `-- init.sls
`-- top.sls

When creating new states, there is a file naming convention.
Look at init.sls, it is the default filename to be searched when loading
a state. This is similar to Python or default web page name index.html.

So when you create a new directory for a state with an init.sls file in it
it translates as the Salt state name and you can refer to it as that. For example,
you do not write pkg: new_state.init, write just pkg: new_state.

Now to deploy it, we will use the function state.sls and indicate the state
name:

root@master:~# salt slave state.sls apache
slave:

 State: - pkg
 Name: apache2
 Function: installed
 Result: True
 Comment: Package apache2 installed
 Changes: apache2.2-bin: {'new': '2.2.14-5ubuntu8.10', 'old': ''}
 libapr1: {'new': '1.3.8-1ubuntu0.3', 'old': ''}
 perl-modules: {'new': '5.10.1-8ubuntu2.1', 'old': ''}
 ssl-cert: {'new': '1.0.23ubuntu2', 'old': ''}
 apache2-utils: {'new': '2.2.14-5ubuntu8.10', 'old': ''}
 libaprutil1-ldap: {'new': '1.3.9+dfsg-3ubuntu0.10.04.1', 'old': ''}
 apache2-mpm-worker: {'new': '2.2.14-5ubuntu8.10', 'old': ''}
 make: {'new': '3.81-7ubuntu1', 'old': ''}
 libaprutil1: {'new': '1.3.9+dfsg-3ubuntu0.10.04.1', 'old': ''}
 apache2: {'new': '2.2.14-5ubuntu8.10', 'old': ''}
 libcap2: {'new': '1:2.17-2ubuntu1', 'old': ''}
 libaprutil1-dbd-sqlite3: {'new': '1.3.9+dfsg-3ubuntu0.10.04.1', 'old': ''}
 libgdbm3: {'new': '1.8.3-9', 'old': ''}
 perl: {'new': '5.10.1-8ubuntu2.1', 'old': ''}
 apache2.2-common: {'new': '2.2.14-5ubuntu8.10', 'old': ''}
 libexpat1: {'new': '2.0.1-7ubuntu1.1', 'old': ''}

 State: - service
 Name: apache2
 Function: running
 Result: True
 Comment: The service apache2 is already running
 Changes:

You can see from the above that Salt deployed our state to slave and reported changes.

In our state file we indicated that our service requires that the package must
be installed. Following the same approach, we can add other requirements like
files, other packages or services.

Let’s add a new virtual host to our server now using the file state. We
can do this by creating a separate state file or re-using the existing one.
Since creating a new file will keep code better organised, we will take that approach.

We will create a new sls file with a relevant name, say www_opsschool_org.sls
with the content below:

include:
 - apache

extend:
 apache2:
 service:
 - watch:
 - file: www_opsschool_org

www_opsschool_org:
 file.managed:
 - name: /etc/apache2/sites-enabled/www.opsschool.org
 - source: salt://vhosts/conf/www.opsschool.org

Above, we include the existing Apache service state and extend it to include
our configuration file. The watch requisite indicates that the Apache
service is dependent on the www_opsschool_org file state and will restart
the Apache service if the file changes.

Below is the directory listing of the changes we did:

/srv/salt/
|-- apache
| `-- init.sls
|-- top.sls
`-- vhosts
 |-- conf
 | `-- www.opsschool.org
 `-- www_opsschool_org.sls

Using the newly created state file, we can try and deploy our brand new
virtual host:

root@master:~# salt slave state.sls vhosts.www_opsschool_org
slave:

 State: - file
 Name: /etc/apache2/sites-enabled/www.opsschool.org
 Function: managed
 Result: True
 Comment: File /etc/apache2/sites-enabled/www.opsschool.org updated
 Changes: diff: New file

 State: - pkg
 Name: apache2
 Function: installed
 Result: True
 Comment: Package apache2 is already installed
 Changes:

 State: - service
 Name: apache2
 Function: running
 Result: True
 Comment: Started Service apache2
 Changes: apache2: True

Salt reports another successful deploy and lists the changes as in the example
above.

All this time, you were probably wondering why there is a file top.sls and
it was never used?! Salt master will search for this file as indicated in the
configuration of your install. This file is used to describe the state of all
the servers that are being managed and is deployed across all the machines
using the function state.highstate.

Let’s add our state files to it to describe the high state of the slave.

base:
 'slave*':
 - vhosts.www_opsschool_org

Where base is the default environment containing minion matchers followed
by a list of states to be deployed on the matched host.

Now you can execute:

root@master:~# salt slave state.highstate

Salt should output the same results, as nothing changed since the last run. In order to
add more services to your slave, feel free to create new states or extend the
existing one. A good collection of states that can be used as examples can be
found on Github:

	https://github.com/saltstack/salt-states – Community contributed states

	https://github.com/AppThemes/salt-config-example – WordPress stack
with deployments using Git

See also

For the full documentation on available states, please see Salt States documentation [http://salt.readthedocs.org/en/latest/ref/states/all/index.html].

Capacity Planning

(Seems reasonable to have the Statistics for Engineers course be a pre-req for
this course)

Fundamentals of capacity planning

Resource usage investigation and exploration

	Examples: CPU:req/sec ratio, memory footprint:req/sec ratio, disk consumption
per user/per sale/per widget, etc.

	Application:Infrastructure metric relationships

	2nd order capacity (logging,
metrics+monitoring systems, ancillary systems)

Finding ceilings

	Discovering resource limits

	Comparing different hardware/instance profiles - production load versus
synthetic

	Benchmarking: pitfalls, limitations, pros/cons

	http://www.contextneeded.com/system-benchmarks

	Multivariate infra limits (multiple resource peak-driven usage) Ex: web+image
uploads, caching storage+processing, etc.

	Architecture analysis (anticipating the next bottleneck)

Forecasting

Linear and nonlinear trending and forecasting (“steering by your wake”)

Details of automatic forecasting and scaling

Seasonality and future events

	Organic growth approaches (bottom-up infra driven, top-down app driven)

	inorganic growth events (new feature launch, holiday effects, “going viral”,
major public announcement)

	Provisioning effects on timelines, financial tradeoffs

Diagonal scaling

(vertically scaling your already horizontal architecture)

Reprovisioning and legacy system usage tradeoffs

Statistics For Engineers

Normal distributions

Normal distributions are frequently used to represent random variables where distribution is not known.

Percentiles, histograms, averages, mean, medians

Software Deployment 101

Software deployment vs configuration management

definition of a host’s role or state

Running services

inetd

Shared containers vs self-contained binaries

Package management

Configuration files

Source based / binary packages

Building packages

Packaging new tools

Software Deployment 201

Running services

daemontools

god

angel

runit

monit

supervisord

circus

Soft Skills 101

The term “soft skills” seems to imply that these skills are somehow less
important than technical skills. In reality, soft skills are often
specifically sought-after by hiring managers. These skills are also
important for operations people seeking to advance to senior
engineering positions.

As much as technical people would like to believe that operations is a purely
technical profession, it is really about serving people. Operations, as the
title indicates, is about making things work for people. Operations people
design, build, and maintain services for people to use. It is all in a day’s
work for an operations professional to translate, educate, inform, reason,
persuade, and generally act as a liaison between technology and the people who
use it.

Soft skills at the 101 level encompass communication skills, time
management, project management, and a basic understanding of DevOps
from an operations perspective. Soft skills at the 201 level lead
into general business skills including positioning, budgeting and
the financial process, using metrics effectively, demonstrating
impact, risk management, managing customer preference, and thinking
strategically.

Communication basics

Audience analysis is the first step to effective communication.
Perform a basic audience analysis by answering some simple
questions:

	Is the audience technical or non-technical?

	How much do they know about the topic?

	How much do they care about the topic?

	What is the intended message for this audience?

Before sending one email or setting up a meeting, answer these
questions. People are inundated with communication from email,
voicemail, Twitter, social media, internal web/wikis, text, IM, and
meeting requests.

Communicating internally

Internal customers could be people who use general computing and
call a helpdesk for support, the organization’s software developers
or engineering team, senior management, or researchers, students,
faculty, or others. The type of customers depends upon the type of
organization and the industry.

Working with internal customers could be as simple as being the
“Ops” side of a DevOps team or it could mean supporting a wide range
of technologies used by customers at varying levels of technical
understanding.

When operations focuses on a specific project or works with a
specific team, such as engineering or software development,
communication is generally specific to that work. It can take on
the form of meetings, video conferencing, chat sessions, and emails
between team members. A communications culture tends to develop in
these scenarios as team members figure out the best way to coordinate
with one another.

When operations focuses on more general IT support, communication
becomes more complicated for the operations people. Factors
such as audience analysis play a larger role in successful
communication with customers. Operations faces a potentially
wide array of communications scenarios:

	Announcing outages to general staff in a large organization

	Announcing upcoming maintenance to a set of staff impacted by a service outage

	Broadcasting a technical idea to a non-technical audience

	Contacting internal customers impacted by a security issue or vulnerability (e.g. Run this update. Install this patch.)

	Asking middle management across the organization to weigh in on a potential service change

	Offering a seminar, workshop, or class to assist customers with a new or modified service for a general audience

	Offering a seminar, workshop, or class to assist customers with a new or modified service for a non-technical audience

	Presenting the service catalog in a question-and-answer session

	Meeting with senior management to address an operations problem, budget shortfall, request more resources, or propose an architectural change

	Meeting with customers to address service problems

	Meeting with specific groups of customers to collect requirements for a special project

	Requesting feedback from customers either individually or as a group

	Meeting with customers who are engaged in the subject matter

	Meeting with customers who are disengaged or in attendance because it is mandatory

This list spans a wide range of communication modes, communication types, customers, and outcomes.

	communication modes email, meetings, larger presentations, surveys

	communication types persuasive communication, instructional, informational

	diverse customer backgrounds management, administrative staff, technical staff, IT-savvy, non-IT-savvy, interested, disinterested

	desired outcomes management decision, increased understanding, increased abilities, increased awareness

Communicating externally

Communicating with external customers can offer additional challenges.
If the external customers are customers of the organization, there
is the possibility that dealings with them could result in a
complaint to upper management.

Reduce complaints by considering how to communicate with these
external customers. When communicating about a service outage, consider
timing of the outage, duration, and impact of the outage on these
external customers. Are most external customers in the same time zone? If
so, then the maintenance window could be outside of traditional working
hours. If external customers include international people in
varying timezones, the outage window may be the one that impacts
core customers the least.

Communicate the timing of service outages with management. It is
best if management knows that external customers are about to be
impacted by operations. Include a justification for the maintenance:
why is it necessary, why this outage window, why this duration,
plan B in case the outage goes beyond the outage window, method of
communication with external customers? All of these pieces of
information may not be necessary if operations already supports
external customers on a regular basis.

There is significant breadth and depth required to effectively
communicate.

Communication Modes

Let’s start by covering the two most common modes of communication
for operations: email and meetings.

Communicating via email

Before sending that email to the entire organization, who really
needs to know the information? People already get a lot of email;
for most it is information overload. How many of customers
already complain about too many emails? Don’t get filtered, Make
communication count.

Here are some best practices when using email to communicate:

	Shorter is better.

	Make the subject descriptive (e.g. “www.co.com outage, May 10 - 6-8 pm”)

	Put the most important information at the top of the message (e.g. deadline, action, outage dates). People generally skim the first few lines to determine if the information pertains to them. Starting with a lengthy background risks alienating people before they read the important part of the message.

	State the audience at the top of the email (e.g. “All Macintosh Users”) to let them know the message is directed at them.

	Consider including a link to an internal site with a lengthier writeup if needed.

	Limit the recipient list to only those people who need or want the information (management, administrative customers, developers, people impacted.). Build a list if necessary to avoid spamming the entire organization.

Sometimes email is the best way to communicate and sometimes not.
Decide when to use email and when to communicate another way.

Consider email appropriate in some situations:

	Attemping to reach a large audience

	The message or action is simple

	The message needs to reach them now

	Need to document the distribution of the information.

	Following up on a previous conversation, request, or action

Consider email less effective in other situations:

	Conversing back-and-forth with people to define or understand a complex issue

	Creating something new

	Drawing it on a whiteboard would provide better enlightenment

	There is a potential for much confusion or questions about the issue

	Asking for a management decision on a technical issue from non-technical management

	Trying to teach people

Sometimes email can be used in combination with other methods:

	After a meeting, send an email to the attendees to summarize action items or decisions. This can be an important tool to remind management of a decision made months earlier.

	Announce the time and location of a seminar or training class.

	Share status of an action taken as the result of a discussion or meeting.

Some common effective uses of email include the following:

	Notification of outages

	Warn of IT security threats (e.g. raise awareness of increased phishing attacks)

	Document a decision made by management in a meeting.

	Document the outcome of actions taken

	Provide status on previous assignments

	Announce training, seminars, and presentations by operations

	Provide customers with a link to access a new or modified service

The dreaded meeting

If customers think they get too much email, some of them also
think they also attend too many meetings. Some people, especially
managers, have corporate calendars that resemble a tetris game.
Coordinating an effective and productive meeting follows a simple
formula.

Have a purpose. Need a decision? Need a decision
now? Need to inform? Need need to persuade?

Be prepared! Consider audience and be prepared to
answer questions relevant to their interest in the topic. Some of
this is covered in more depth at the Soft Skills 201 level.

Communicate at the right level. Leave out technical jargon if
meeting with a non-technical audience. Consider simplified
explanations, diagrams, and framing the content to address concerns
that the audience cares about. Operations is the translator of technical
information when meeting with a non-technical audience. Take that
role seriously.

Set a duration. Decide how much time is needed to present the
topic and answer questions. Make it as short as possible. Some
organizations default all meetings to one hour.

Consider what the audience gets out of the meeting. Should
the audience increase their knowledge or understanding on the topic?
Maybe they have no interest in the topic but are the final
decision maker due to funding levels, type of money, policy, role
within the organization, or other factors.

Stick to the agenda. Do not let the audience take the meeting
off course. In a 1:1 meeting, the audience might ask for IT support
for an unrelated problem. Agree to put someone on the problem after
the meeting, then go return to the scheduled topic. In a larger
meeting, audiences can tangent into related areas or even unrelated
areas. Be prepared to steer the meeting back on topic.

Summarize Summarize the outcome in the last
few minutes of the meeting. It can be good to send an email to
summarize decisions made in the meeting in order to document the
outcome.

Required meetings

Sometimes attendees are mandated to attend meetings:

	Committees where members are selected by the organization to represent a subset of people. Committees are often too large and unproductive. The saying “languishing in committee” describes this cultural phenomenon.

	Management meetings where all members of a management team are required to meet at regular intervals to review topics that may or may not be relevant to everyone in the room.

	Training where all employees of an organization are required to complete a minimum set of hours on a particular topic.

The operations person tasked with leading one of these types of
meetings may find a less than enthusiastic audience. Apply the best
practices above and attempt to make these meetings productive. Even
without being the chairperson, sometimes keeping a meeting on topic
and looking for areas to be productive can reduce inefficiencies.

Alternative meeting styles

Meetings do not always require scheduling a conference room for an
hour or more and everyone arriving with a laptop or a legal pad.
Consider stand up meetings or even short 10-minute slots on a
manager’s calendar to provide a quick status update or respond to
a question that is best answered in person.

Special cases for operations

There are some special communication challenges that operations
engineers face.

Communicating planned and unplanned outages

Managing maintenance windows in the organization involves more
than choosing a date and time that works for operations.

Consider working around important events within the organization.
It takes extra planning and outreach to learn about these events,
but it is one way operations demonstrates that it is savvy to the
organization’s needs. Wouldn’t it be good to know if the organization
is about to roll out the next version of a product, perform a year
end close-out, host a big conference, or stage a demo to an important
external stakeholder. There are no extra points for doing this,
but operations avoids losing respect within the organization for being
unaware of the organization’s core business.

For outages that may impact a large percentage of the customers
or a critical service, it is a good practice to notify the organization
more than a week in advance. This serves a dual purpose: it alerts
people who might be out of the office the week before the actual
outage and it provides lead time to reschedule in case someone
responds with a critical activity that would conflict with the
outage. Send a reminder the day before or the day of the outage for
customers who missed the first message.

To send a followup email, simply forward the original email with
a short note at the top reminding people of the time and services
impacted.

Example: Planned outage notification

All file cluster users,

Save your work before 7:00 pm Friday, January 10th for a planned
outage of the file cluster.

The file cluster will be taken off-line for scheduled maintenance
at 7:00pm Friday, January 10th. We expect the outage to last until
10:00 pm.

Notify operations immediately if this interferes with time-critical work.

[provide a way to notify operations]

Fielding customer complaints

In the world of operations, customer complaints are a given. Operations can’t
please everyone all the time. Every operations person has dealt with
unhappy customers so it is good to develop strong people skills.

It is important to face customer complaints, not avoid them.
Occasionally we have a customer who is a chronic complainer and the
operations staff dive under their desks when that person walks in
the office. A complaint should be treated as an opportunity to
hear a customer’s perception of services. Complaints can be turned
into opportunities for improvement and can be a path to creating a
lasting relationship with customers.

People are often at their worst when reporting a complaint; emotions are
high due to lost data, a service outage, or frustration trying to
use technology. Now is not the time for operations to get emotional or
defensive about the work. Instead of reacting, follow these steps
to adeptly manage customer unhappiness and maybe increase customer
respect for operations as a whole.

	Listen without judgment

	Rephrase the concern so to confirm understanding

	Agree to investigate if it isn’t something resolvable now

	Leave the customer with the assurance that someone will get back to him/her with a solution or feedback.

	Get back to the customer even if it is to say

	It was a one-off problem and here is why

	We found a problem internally and it is now resolved

	We are improving our processes to reduce the likelihood of it happening again

	Or an explanation that simply provides feedback to the customer.

	And don’t forget to thank the customer for taking the time to provide feedback

The reason to close the feedback loop is to show the customer that
operations did something as a result of the complaint. The customer
will know that someone in operations was concerned enough to
investigate and potentially resolve the root cause of the complaint.
It could have been inconsistencies in operation’s internal procedures
or a skills gap. That’s a bonus for operations and the customer
should know that the communication had a positive impact.

Try these techniques with chronic complainers. Sometimes all they
want is to be heard. Bring in IT operations management if someone
is repeatedly impacting operations with complaints or becomes
abusive, This advice stands if operations feels like the above
techniques are not working. Escalation to the next person in the
management chain is a valid procedural step in any of these instances.

Todo

It might be interesting to put together an exercise where the student interacts with a fictional customer in some different scenarios. Depending on what the student does, the customer is happy or complains to the operations person or escalates the complaint up the management chain. How does the student respond? Could have multiple scenarios with different customers (a customer who causes his own problem then gets in the way, a customer who cannot wait, a customer who tries to fix the problem and makes it worse, a customer who uses the opportunity to speak to an operations person to dump 10 other requests on that person. This idea came to me from a series of books my kid has where you make a decision on page 10 that leads to to either page 26 or page 40. Your decision could end the story or take you in a new direction. The books are full of these decision points so the story is rarely the same twice, kinda like customer support!

Time Management

Time management is a critical skill for the operations professional.
Customer service requests and trouble tickets are up against project
work and infrastructure maintenance and enhancements. How does one
person prioritize and accomplished?

Recommended reading:

	Tom Limoncelli’s book Time Management for System Administrators [http://amzn.com/0596007833]

	Tom Limoncelli’s Time Management Wiki [https://github.com/TomOnTime/tomontime/wiki]

Tom Limoncelli also teaches a Time Management tutorial at the USENIX
LISA conference [https://www.usenix.org/conferences] and sometimes the
LOPSA community conferences: Lopsa-East [http://lopsa-east.org] and
Cascadia [http://casitconf.org]

Todo

does this section need a real writeup or are references to Tom’s work enough?

Project Management

Project management is a necessary skill for any mid-level operations
person. Start with small projects and work the way up to larger ones.

Be aware that project customers, or stakeholders, will often not know
what they truly want from a project or they ask for the moon. Review
the project management triangle [http://en.wikipedia.org/wiki/Project_management_triangle] (good, cheap, fast: pick two).

Henry Ford is credited with saying about his customers “If I had asked
customers what they wanted, they would have said faster horses.”
Whether or not he said it, it still captures the essence of requirements
gathering for operations projects. The operations professional is the
technology expert. The stakeholders know they want a certain
output or service. They may not know what that looks like or how to
achieve it. The challenge is to extract requirements from the
stakeholders then realize that these may not be the real or complete
requirements.

Enter project management. Project management should help to
frame the scope, resources, goals, and outcomes for the project.
Let’s look at two different project management methodologies as
they apply to operations.

Waterfall

Waterfall is a hierarchical form of project management that was adapted
from other industries for the software development world. In waterfall,
think of the phases of a project as a cascading waterfall. Each phase
must be completed before moving onto the next phase. The entirety of the
project is scoped from beginning to end including milestones and
and final deliverables.

Technologies change, requirements change and scoping a large project
over a long period of time with what are commonly incomplete
requirements or faulty assumptions by stakeholders leads operations down
a path of delivering an incomplete or inaccurate solution at the end.
Waterfall breaks down in practice because it requires a promise of
delivery that may be several years out.

Also, by requiring each phase a project to complete before moving
onto the next phase, bugs and issues are often not discovered until
late in the project. This causes delays and sometimes large amounts
of refactoring or re-architecting to go back and resolve these issues.

Detractors of the waterfall method point to its rigidity and
lack of testing during the development phase. One of the issues in
operations and development work is that stakeholders may not have
a solid grasp of requirements until they see a working prototype,
or iterations of working prototypes during the implementation of
the product. It is common for stakeholders in a project not to know
what technology can deliver until they see it. Many operations teams
are moving to Agile methods for several reasons and one of them is
because agile development allows stakeholders to see working bits
of the product before the end and to modify requirements before
it’s too late.

Agile

Agile is a project management methodology. Agile started in 2001
when a group of software developers created the Agile Manifesto.
The Agile Manifesto [http://agilemanifesto.org/] outlines the 12
principles of agile. Agile is seen most often in the software
development world but it has crept into operations because of the
obvious benefits over waterfall. Common implementations of Agile
include: Scrum, Kanban, and the hybrid Scrumban that was created
to meet more operational needs. The idea behind Agile is continuous
release or delivery of a product. Instead of creating one big outcome
at the end of a project, Agile allows a team to release a partially
completed project for stakeholder review and requirements tweaking.
Another big benefit of Agile methodologies is the discovery of
problems early in the product development cycle when refactoring
can be done immediately before the end product is set in a particular
architectural direction that would make it costly to change.

Some documented benefits of agile include the following:

	Reduced process overhead

	Improved team and stakeholder communication and collaboration

	Errors and bugs are fixed in development instead of waiting till the product
is “complete” to address them.

	Stakeholders see the product as it is shaped and have the ability to adjust
requirements during development

	Project teams are empowered

	Can easily be combined with DevOps methodology to improve effectiveness of
development-into-operations

	If done well, can increase work output of teams (increased velocity)

	Everyone on the project can easily see where the project stands (e.g. Scrum
board or Kanban wall)

One thing to remember when implementing an Agile solution: adapt it as
needed. Each of the following has its own simple framework, but
organizations can use some or all of the implementation and even combine
Agile methods to achieve success.

Scrum

Scrum is the more prescriptive of the included methods. Scrum is
recognizable by Scrum boards, user stories, timeboxed sprints,
cross-functional teams, Scrum Master and Product Manager roles, the
burndown chart used for tracking project status, and the Scrum
meetings: daily stand-up, and retrospectives.

Some of the limiting factors of Scrum for operational teams include
timeboxing and tracking the burndown velocity of the team.

Scrum board - An electronic or physical board that is used to track
project status, actions that are in progress, upcoming work, and completed
work. A basic Scrum board will have three columns: Todo, In Progress.
Done. Items in todo are the up and coming work, items in “In Progress”
are currently being worked during this sprint. Done is fairly
self-explanatory. Assignments can be tracked by sticky note on a white board
or via an electronic Scrum board. The Scrum board also has rows. These
are referred to as swimlanes. Rows can be labeled with project names
and it common to have the very first swimlane titled “unplanned work”
for operations tasks that fall on the team.

Electronic Scrum board - Electronic Scrum board software can be great if
the team is geographically distributed. All members of the team can see
and update the board from remote locations. The downside of electronic
versions is getting the team to keep the application open and updated.
Burndown can also be computed automatically making it easier for
management to see progress.

Physical Scrum board - Often a whiteboard with a grid made of electrical
tape. The swimlanes and tasks are marked by sticky notes. The team names
can be post-it flags or some other marker. The downsides to a physical
board include manual tracking of burndown, stickies falling off the
board onto the floor (hint: Buy the Post-It super sticky notes or use
tape or magnets), and lastly distributed teams cannot see the board
easily. The upside to a physical board is visibility. The board can be
placed in a prominent location where the operations staff can see it
every day. This makes for easy daily stand-ups. It also allows members of
the team to walk up to the board and have conversations with other
members of the team about the work in progress.

Sprint - A sprint is a duration of time defined by the team when the work
will be done between Scrum meetings. Work is chunked into pieces small
enough to fit within the sprint window. A sprint window might be a week,
two weeks, four weeks, or whatever length of time seems to fit the
team. During the sprint, operations staff focus on the work agreed upon
at the beginning of the sprint. Organizations can define how unplanned
work will be dealt with during a sprint. Sometimes it is helpful to be
able to tell a customer that we can prioritize that project request in
two weeks at our next sprint meeting instead of feeling like operations
has to drop everything for a last minute request. Sprints are somewhat
rigid and can break down with operations because the work doesn’t neatly
fit within a timeboxed window. The team will also provide time estimates
for each task.

Daily Standup - This is a short daily meeting with the team at the
Scrum board (virtual or physical). The person in the Scrum master role
leads the daily stand-up by asking each team member a few questions:

	What are you working on?

	Are there any impediments?

	Do you need anything to be successful?

Each member of the operations team now knows what is expected of him/her
for the day. Balance the expected work output with other team efforts
such as trouble tickets and outside projects.

Burndown - The burndown tracks estimates of time with the actual time spent
working on a project’s tasks. The resulting chart will show a project
approaching 0 as the level of effort needed to complete the project winds down.
Teams get better at estimating with experience. Burndown can also demonstrate
if a project is taking longer than planned or is ahead of schedule. Building a
burndown chart can involve a spreadsheet or graphing application. It is common
to build formulas in excel that will automatically update a pivot chart showing
the project tracking. Some burndown charts are very complex and others are
simple. The organization has to decide how fancy to get with this tool.

User stories - In Agile software development, user stories can be feature
requests, bugs, or modules the team plans to code for a product release.
In operations, user stories can be small or large projects. Smaller
projects are usually broken down into smaller more easily digestible
pieces otherwise a project can park in a swimlane for an inordinately
long time bringing down team morale and potentially impacting
productivity. Teams should see positive outcomes and accomplishments
across the swimlanes.

Cross-functional teams - In a development environment, a cross-functional
team could include developers, testers, management, and operations. The
purpose is to introduce DevOps to software development by including
roles that have a stake in the project at different levels. In
operations, a cross-functional team could include people from systems
administration, networking, security, and management.

Kanban

Kanban is a much less prescriptive Agile implementation. Kanban can be
recognized by a similar task board to Scrum but often there are more
columns. Kanban’s strength is the work in progress (WIP) limit. Kanban
doesn’t require roles, timeboxing, or burndown tracking like Scrum.

Because there is no timeboxed sprints, work continuously moves across
the swimlanes on the Kanban board. Daily stand-ups are critical in Kanban
because there isn’t a touchpoint at the end of a sprint to review
completed work effort. Kanban boards can have several additional columns
to assist in the management of this continuous work flow. An example
Kanban board may have “Coming soon” “Review” “Available” “In progress”
“Acceptance” “Completed.” The purpose of these additional columns is to
enable teams to pull work into the “In progress” column as they finish
other work. The “In progress” column and other columns will have what is
called a WIP limit. There are a few schools of thought regarding WIP
limits. Each organization must experiment with the WIP limit until a
sweet spot is found for operations.

In Kanban for operations, the columns can be varied across teams or
organizations. These columns are only provided as an example. The
organization needs to find the Kanban workflow that works best for the
team. There are several good resources that explain various ways of
configuring a Kanban board. Sticking with the current example, let’s
review the columns in an example Kanban board to understand
their purpose.

	Coming soon - these are tasks, projects, or user requests. They are
un-prioritized and may be big or small.

	Review - These are tasks that are prioritized by management or the team
during the daily stand-up. They are put “in the hopper” as work items that
should be reviewed and possibly broken into smaller pieces if they are too
large. The downside of too large is similar to Scrum when the user stories
were too broad. If an in progress items its in the active queue too long, it
takes up a WIP slot and can make it difficult to understand if the team is
making progress on that item.

	Available - This item has been reviewed, broken into a reasonably sized task
and approved by management or the team to be pulled into the active column at
the next opportunity.

	In progress - Similar to Scrum, these are the tasks being worked actively by
the team.

	Acceptance - When someone on the team considers a task complete, s/he moves
it to this column. Acceptance means it is discussed at the next daily stand-up
and possibly accepted as done by the team. Acceptance can also mean
stakeholder acceptance. This could also be a testing phase for something that
is rolling toward production. If something idles too long in this column, it
will hold up other work because of the WIP in progress limits placed on this
column.

	Completed - These are tasks that are accepted as completed and put into
production.

	Impediments - Some boards might include a small section of a column to
identify impediments. Impediments are tasks that cannot begin because of
outside forces. Usually management intervention is required to resolve the
impediment. By separating these tasks on the board, the team sends a message
to management that this work requires outside intervention to move forward.

Work in Progress (WIP) limits WIP limits define the maximum number of
tasks that can appear in that column on the Kanban board. The two
schools of thought that seem to pervade are:

	2n-1 - where n = the number of people on the operations team. The reason for
this is to enable team members to work together on some tasks but to give
enough tasks so team members stay busy.

	n-1 - where n = the number of people on the operations team. The reason for
this is to encourage collaboration on the team and not to overwhelm them with
too many tasks. If someone on the team completes all of their work, that
person should be able to pull the next available task from the “Available”
column.

What is the risk of having a WIP limit too low or too high? A high WIP limit
might mean the team is taking on too much at one time. Each member of the team
may get overwhelmed with the amount of work. Consider these are reviewed daily
in the stand-up meetings and team members can pull new work from the
“Available” column when current work moves to “Acceptance.” High WIP limits
mean that team members are less likely to work together on projects or tasks
because each person has his/her own work to complete. A WIP limit that is too
low could create a bottleneck, disallowing a team member from pulling new work
into the “In Progress” queue because other people on the team have hit the WIP
limit with their own work. The WIP limit is a sweet spot that the organization
needs to discover through experimentation.

Whenever there is a bottleneck in Kanban, the team can refocus its
efforts on the item stuck in the flow in order to unblock progress
across the board. WIP limits force this to occur because a column with a
WIP limit of 3 on the acceptance column will not allow any tasks to move
to that column if there are already 3 items waiting for acceptance. It
is a way to keep work moving across the board.

Scrumban

Scrumban is a hybrid of the two previously mentioned methodologies.
Operations teams seem to embrace Kanban or Scrumban because of the
flexibility of daily re-prioritizing and the WIP limits that keep the
team from getting overwhelmed.

A Scrumban implementation would take elements from both Scrum and Kanban.
For example, operations might decide to define some roles, keep the review and
retrospectives, hold the daily standup from Scrum while enforcing WIP
limits and implement continuous work flow from Kanban.

Agile Toolkit

jira [http://www.atlassian.com/software/jira/overview]

The Tao of DevOps

What is DevOps

DevOps seeks to include the IT operations team as an important
stakeholder in the development process. Instead of developers solely
coding to meet the stakeholder’s requirements on time and on budget,
they are also held responsible for how easily it deploys, how few
bugs turn up in production, and how well it runs. Developers also focus
on providing software operations can asily support once it’s in
production. Instead of bringing operations into the conversation
after the product is complete, the DevOps methodology includes
operations in the development stream.

Development’s view:

	Roll a product out to meet customer specifications within a certain timeframe

	Continuous delivery means recurring change as bugs are fixed and features
added

	Fast changing environments are needed to support dev

	Agility is key

Operation’s view:

	Supporting the product for customers

	Keeping a handle on IT security

	Planning for deployment to production state

	Changes are slow/incremental

	Consistent environments are needed to support operations

	Stability is key

Why DevOps is important

In organizations where DevOps is not a priority, development is
often viewed as customer-focused by trying to solve problems and
deliver solutions while operations is viewed as a barrier to
development’s mission. By combining these two often competing
mindsets, both sides can be satisfied. The result is a product
that potentially has fewer bugs, higher availability, increased
security, and a process for improved development over the life of
the product that works for both the developers and the operations
people.

It is also possible to implement a DevOps methodology in a pure
operations teams. In this scenario the operations team is also
Development because they stand up a webserver, provision virtual
machines, or code configuration management systems. In this case,
operations needs to wear both the development and operations hats by
meeting customer needs while also addressing security and supportability
of the solution.

What isn’t DevOps

A person cannot be a DevOp. You don’t hire a DevOp.

The importance of Documentation

What to document

	Runbooks? SOP? (cparedes: might be worthwhile even though we want to automate
SOP’s away as much as possible - what should we check at 2 AM? What do folks
typically do in this situation if automation fails?)

	Architecture and design (cparedes: also maybe talk about why we choose that
design - what problems did we try to solve? Why is this a good solution?) How
to manage documentation

Documentation through Diagrams

Anecdote At one job we had a single network engineer. He had a
habit of walking up to a whiteboard to explain something to the
systems folks. He would proceed to draw what we considered a
hyper-complex-looking diagram showing the current or future state
of some networking solution. We could never keep his configurations
in our heads like he did and he wasn’t always around when we had a
question. One of us figured out that we should take a picture of
the whiteboard after he finished drawing. These pictures went into
the operations wiki. They weren’t beautiful but they saved us time
when we could easily refer back to the pictures we took.

Diagrams don’t always have to be professional visio-quality to count as
documentation.

Functional diagrams

Technical diagrams

Working with other teams

Soft Skills 201

Soft skills at the 201 level attempt to inject higher level business
awareness and practices into an otherwise sound technical operations
person to create a senior operations engineer.

Soft skills at the 201 level include positioning, budgeting and the
financial process, using metrics effectively, demonstrating impact,
risk management, managing customer preference, and thinking
strategically.

Business Acumen in Operations

What is business acumen? Business acumen as a leadership competency simply
defined as a general understanding of business principles that leads to an
organization’s success. While operations professionals do not need to be senior
executives, development of business acumen as applied to operations can help to
bridge the gap between the organization’s senior leadership and the operations
team. Business acumen as applied to operations works on multiple levels. In
many organizations, operations is a service unit within the larger organization
but it also serves the needs of the organization as a whole. The savvy
operations person will look at operations within that context, applying the
following skills to appropriately position operations and act with the best
interests of the greater organization in mind. This also helps when trying to
make the organization DevOps friendly.

Distilling the definition of business acumen for operations yields the
following important skillsets:

	Understand the role of operations within the context of the organization to
correctly position operations.

	Think broadly about decisions and act decisively.

	Support and promote change as needed.

	Develop basic business skills that allow operations to communicate within the
executive suite.

Understanding the role of operations

Under any of the operations professions, the most fundamental role
of the operations person is to deliver services to a set of customers.
To build upon this further, the operations person maintains existing IT
infrastructures, translates customer requirements into tangible and
actionable solutions, assists in the protection of customer information
and services, and advises stakeholders on application of technology
under existing limitations of time, money, or capabilities.

By thinking of operations as a business unit instead of a forgotten
office within the organization, the operations engineer is already
thinking at the correct level to assess how to support the needs
of the organization.

Understand how the organization competes within its industry.
Commercial entities, non-profits, educational institutions, government
agencies all measure success in some way. For commerce, it will be sales
and profit. For educational institutions, it might be numbers of
incoming students and retention rate of students. For a non-profit it
might be the number of people willing to give to support the work of the
organization and the number of people who use its services.

All of this leads to correct positioning of operations within the
organization.

	What are the core competencies of operations and how do they serve the
internal business units and the organization as a whole?

	What core competencies should operations develop in order to better support
the organization’s mission?

Maintaining Existing IT Infrastructures

The most visible role of Operations is to maintain the status quo.
For the system administrator this means maintaining servers and
processes such as logging, monitoring, backups, authentication, or
naming services. For the network administrator it means maintaining
routers, switches, the edge network, gateways, or the relationship
with the corporate Internet Service Provider (ISP). A security
engineer might be responsible for maintaining a vulnerability
scanning capability, incident response policy and processes, intrusion
detection systems, firewalls, and a customer security awareness
training program. Operations may also be responsible for maintaining
access to internal services (e.g. financial systems, corporate content
management systems, procurement systems, etc.) that may impact the
various business units within the organization. These roles are
distinct but there is sometimes overlap between them in smaller
organizations where fewer people serve in multiple roles.

Translating Customer Requirements

Operations roles are customer service positions. These careers
require a level of customer interaction because the services delivered
by the Operations professional must be driven by customer needs.
In this case, customer is used to mean the business, organization,
or other entity that is employing the Operations professional. Some
questions to ask to help the Operations person understand requirements
from the customer perspective:

	What is the core mission of this organization?

	How does Operations support, hinder, or allow the organization to innovate
for the mission?

	Who are the core customers (internal, external, or both)?

	What does the organization need from the Operations professionals?

	Why should this organization come to these Operations people for this service
or solution? What is the value proposition for Operations within this
organization?

	How could Operations provide more value: higher level of competitiveness,
faster service delivery, stronger security, or other benefit that aligns with
the mission?

Translating customer requirements is key to focusing the efforts
of Operations. Operations work can be a slippery slope where the
professionals are spreading themselves too thin on projects and
deliverables that do not serve the organization’s mission. One way
to focus the efforts of Operations is to answer these questions and
to ensure that the Operations organization, whether insourced or
outsourced, is delivering services that provide the most value.

Protection of Information and Services

Often the Operations professionals in an organization are the people who most
completely understand the technical risk to organizational assets from an IT
perspective. Senior management within an organization will usually understand
risks related to financials, competition, manufacturing, etc. but they often do
not understand IT enough to make an informed decision. Operations professionals
are the ones with the deep technical expertise required to comprehend risks,
threats, vulnerabilities, and countermeasures. They use this expertise to
express their concerns in a way suitable for senior management. This is another
area where the Operations professional is communicating with the organization’s
leaders to advise on appropriate actions to address IT security where it makes
sense for the organization.

Areas where organizations need the Operations professional
to advise on IT security could include threats to data from internal
and external sources, hardware failure, site availability or
resilience, data preservation, and information integrity. Again,
these areas are dependent on the organization’s mission.

For example: an ecommerce organization will most likely want strong site
availability and protection of customer personal information. The operations
professionals might build a site with high resilience and availability
including use of Content Delivery Networks (CDNs); strong encryption (not only
for the ecommerce session but also data at rest); role-based access for
internal employees accessing customer information, to reduce access to only
those people who need it. Organizational leaders often do not understand how
these solutions are implemented so it is up to the Operations professional to
communicate the threat, solution, cost, impact to the organization of
implementing the solution.

Advising within Current Limitations

The Operations professional who advises an organization must also consider
limitations that impact the potential solution. Cost, timing, expertise within
the organization, available time of the people who would implement the
solution, or IT security issues may be considerations. For example, decision
makers within the organization will need to know what is possible and at what
cost so they can decide how to spend the organization’s money. Good, fast, or
cheap (pick two). It may be the operations professional’s responsibility to
explain this concept from an IT perspective.

Thinking broadly

Broad thinkers can look at a problem from the viewpoint of other
people and business units within the organization. Instead of insular
thinking, they approach problems with a broad-minded perspective.
How do decisions impact other areas of the organization and,
alternatively, how does the organization view this particular issue?
Those with strong acuity for business will see the big picture and
be able to understand the implications of a decision on more than
just operations.

In some cases it may not be a problem, but an opportunity that injects
potential life into an organization or recalibrates it. Business
leaders, stakeholders and customers often don’t understand what
technology can do for them. Operations should understand the
organization well enough to see where technology can support
innovation. This leads into change as a constant.

What would it take to make this happen? What are the missing ingredients
for success?

Promoting Change

The operations world changes rapidly, more rapidly than other sectors.
Operations people cannot afford to cling to a specific operating
environment, hardware platform, or technical solution because the
industry has already started moving toward the next innovation.

Once operations understands how the organization competes to stay viable
in its marketplace, operations can leverage technology to support those
needs. Operations may be the first business unit to grasp the
importance of a technology innovation that would improve the mission
work of the business.

Identifying that change is only the first step. Next operations
must be able to demonstrate the benefit of the innovation to the
organization’s leaders in a meaningful way to promote change.

Building basic business skills

Basic business skills include simple tasks such as learning to use Excel
to build a basic budget and navigating internal business systems
such as procurement, capital expenditures (CapEx) and contracts. Some
skills are the same everywhere (e.g. Excel) and some require study of
the internal organization (e.g. procurement). Understanding CapEx
means being able to understand what is or isn’t a capital expenditure
(e.g. some hardware purchases may be) within your organization and
knowledge of your organization’s depreciation process.

Budgeting and Financial Skills

A basic knowledge of Excel includes formulas, formatting for
readability, using multiple worksheets and importing external data.
More advanced Excel knowledge includes use of macros, pivot tables and
pivot charts.

Some operations folks use other Excel-like programs such as OpenOffice
or LibreOffice spreadsheet programs. Use caution when using something
that the senior leaders do not use. If the whole organization has
adopted LibreOffice as the standard spreadsheet application, that works.
The problem occurs when the boss wants to share the spreadsheet with
some of the organization’s senior leaders and the file format doesn’t
translate exactly or the file is unreadable to them. In this case,
try to bridge the gap between operations and the executive suite by
using the same tools. Formats do not always translate between two
different spreadsheet programs.

Building a basic budget requires institutional knowledge. How is
employee labor computed? Understand operations’ income and where
it comes from. Are any employees billable to other projects? Is
there a flat budgetary structure with a single cost center for all
labor or are there multiple cost centers. Is there any income that
has special restrictions? How are purchases handled: things such
as parts, services, software, contractor services? Does operations
have to account for overages or money not spent at the end of the
fiscal year?

Generally, organizations have financial people who can provide reports
for various cost centers. If operations fits neatly within one or more
cost centers, these reports can help build a budget. If
operations is combined with other projects or business units, then the
work of separating operation’s budget becomes a bit more complex.
Starting with these reports is a good first step.

To really understand how these reports work, understand how
operations is paid and how it spends within the organization.

How is operations funded?

Where does operation’s base funding originate?

	Is Operations billable or do they have constant funding from year-to-year?

	Does someone need to request this money or is it always there?

	How are pay increases funded?

	Is there only one source of money or are there multiple income streams?

Does everything come out of one cost center or are there multiple cost centers?

	If multiple, are they broken down by project, type of expenditure (labor,
contractors, services, supplies)?

Is any of the money special?

	Does it expire?

	Does it come with strings/hooks to specific projects or billables?

How does operations spend?

	How are employee salaries computed to include benefits and overhead?

	How are contractors paid?

	Are there special rules for obligations? In some organizations, some kinds of
money must be allocated up front and cannot be reclaimed even if not spent
until after the contract or service has completed or the fiscal year has ended.

	How do operational purchases work within the organization (parts, services,
software, training, travel, supplies)? Who pays for these purchases? Who tracks
these expenses?

	Does the organization have a CapEx process and where does that money
originate? Does depreciation impact the budget?

	Are there any hidden costs?

	Service fees from internal organizations?

Answering these questions and looking at reports from within should
provide most of the answers. Operations may have to implement
tracking to get some answers if they aren’t easily identified in
the reports.

Why would any sane operations person want to go through all of this to
assemble a budget?

	Operations is understaffed and wants to ask senior management to hire more
people

	There has been staff turnover and operations needs to fill those positions.
How much is available and what opportunities exist to do something different?

	Senior management is asking hard questions about the operations budget (e.g.
why do we spend so much on operations, where does the money go?).

	Operations is considering a student hire or contractor to help with some
short-term work but operations cannot move forward until demonstrating that
they are spending wisely.

Budgeting for impact

Just putting numbers in a spreadsheet isn’t budgeting. What do the
numbers show? Is operations spending too much on senior people?
Equipment? Vendor maintenance? Where is the majority of
spending (commonly it is labor)? An easy to present budget can
also help to understand if operations is well managed.

Take that same view of the budget that gave visibility into
operations and use it to support a request or a claim to senior
management.

As an example: consider a senior person leaving the organization.
Operations needs to fill that slot with a new person to avoid getting
overwhelmed.

	Does this vacant position present an opportunity?

	Does operations need to hire someone with specialized experience in a new
area?

	Could operations benefit from hiring two junior level people using the same
salary slot as the former senior person? Does that work mathematically within
the organization’s hiring rules?

	Could operatoins reduce the overall cost of operations to help the
organization by hiring one junior person and growing that person?

	Could operations hire a junior person and use the remaining money to refresh
hardware or invest in a new technology to help the organization?

See how to make some of these arguments mathematically in a
spreadsheet. The part that is missing is the “why” and that’s where
the impact comes in. Senior management may believe that operations
needs to reduce overall costs. This is when operations needs non-numerical
supporting evidence to persuade management that operations does
need to hire a specialist or make the case for an apprentice that
would achieve a cost savings but would reduce capabilities until
the person came up to speed within the operations team. Budget
decisions have consequences: make sure those impacts are clearly
illustrated within the numbers but also be prepared to explain the
non-monetary impacts. This includes risks to the organization such
as reduction in capabilities.

When preparing for a big budget presentation where operations is asking for a
decision that will impact operations, consider the following supporting
strategies:

	Enlist customer support. Customers are asking for improved capabilities,
better response, new technology. How can they provide input to management that
operations needs more or different resources to serve them better?

	Find out if there are any new initiatives within the organization that would
rely on specific expertise or additional operations resources. This
demonstrates a tangible need (e.g. Project X will require 50% of someone from
operations to implement their technical plan).

Using these additional supports requires knowing the organization and
having a good relationship with the customers. Ideally, customers come
to operations in the planning stages of new projects in order to get
feedback on potential technology issues before they begin work. That
makes this step a bit easier. If not, then begin reconnaissance by
talking to project leaders or middle management within the organization.

When researching organizational needs, start with some basic questions:

	Planning anything new in the next year?

	What projects is the group starting?

	What technologies are not in use that would make the unit more productive?

	Does operations provide the right level of support to the division?

Exercise:

Choose a budget scenario from above or make up your own.

	How would you build a basic budget to persuade senior management on your issue?

	What would be important to highlight?

	What non-monetary supporting information would help your cause?

The cost-benefit analysis

The cost-benefit analysis, or CBA, provides senior management with
concise proof that operations has done its homework when proposing a
solution.

The first step in the CBA process is to know the audience. The
higher up the organizational chain, the less detail required. Before
presenting a CBA to management, prove that the solution is the best
one.

Before detailing the cost of a solution, operations needs to know existing
expenditures without it. What is the cost of not doing anything? This is where
the benefits of performing a solution would need to outweigh the status quo.

Building a case

Everything in a CBA should be represented in the same units, the most
common being money. Consider benefits to the solution in terms of savings,
efficiency, increased income to the organization.

Cost should include anything that explicitly adds to the total cost of
the solution:

	Employee labor

	Contractor costs

	Maintenance fees

	Up-front costs and licensing

	Hardware

	Depreciation

	Facilities costs (outfitting a space)

	Provisioning or migration costs

	Networking

Benefits should include anything that is an outcome of the solution:

	Increased productivity

	Increased organization efficiency

	Increased income to the organization

	Increased capabilities that enhance the organization in another way

Putting it all together

Todo

Might give an example here. Need to write more explaining how to assemble the pieces.

Exercise

Put together a CBA for a recent project or task you worked on or
encountered:

	How would you estimate costs that are not known?

	How do you monetize benefits that are not explicitly monetary?

	What does the result tell you?

	How could you sell this idea to non-technical people using the CBA?

Navigating the capital expenditure process

The Capital expenditure (CapEx) process is used by organizations to
purchase assets that have value across multiple tax years. In operations
CapEx usually means new equipment or equipment that extends the useful
life of existing equipment beyond the existing tax year.

CapEx allows an organization to depreciate an asset over the estimated useful
lifespan of that asset. How is this valuable? On the organization’s balance
sheet, only part of the total expense is counted for a specific tax year. The
amount of the expense depends on the type of depreciation used.

Straight Line Depreciation

With straight line depreciation, assets are depreciated at an equal
amount each year. A piece of equipment with an estimated useful
lifespan of 4 years would be depreciated 25% per year on the
organization’s expense sheet.

Accelerated Depreciation

Accelerated depreciation usually frontloads the depreciation costs. This
method may more accurately reflect the value of equipment because there
is a greater depreciation at the beginning of the cycle. An example of
accelerated deprecation might require a piece of equipment to be
depreciated over 4 years at a rate of 40 percent per year. There would be
a greater expense in the first year, calculating 40% of the total
value of the asset as depreciation. In the second year, compute 40%
of the remaining value, and so on until the fourth year at $0.

An analogy to help explain Accelerated depreciation might be the
purchase of a new car. The car depreciates the moment it leaves
the lot. Even if the owner were to sell the car soon after purchasing
it, the car has already significantly decreased in value.

Building a business case

Todo

write this section.

Distilling information for impact

This skill goes hand-in-hand with budget but it is also an excellent
standalone skill. Operations deals with complex implementation of
technology. To the non-technical person, the architectural diagram
on the whiteboard looks like a Rube Goldberg machine.

The further up the management chain, the more distilled information
should get. Senior leaders do not usually need or want deep
technical detail. When presenting a complex solution, it is fine
to have one diagram that is completely unintelligible to them as
long as it is only used to to demonstrate that operations did more
than throw a blade in a rack and spin it up to achieve the solution.
The most important part of the presentation is the part where
operations answers the questions in the heads of senior leaders
even before they ask them.

What are their questions?

	What are we trying to accomplish?

	What do we do today and how is this better?

	How do we know this is the best solution?

	Do we have the right people to make it happen?

	How much will it cost?

	How long will it take?

	What is the benefit if we do it?

	What is the risk if we don’t do it?

	How do we know if it worked?

Exercise

Take an idea you have and use the questions above to try to build a case
for senior management to fund this idea.

Specific Examples

Below are some specific examples to demonstrate the importance of soft
skills in operations. In each example, soft skills closed the deal
because they enabled the operations person to see the situation from
other perspectives and communicate the needs of operations in terms of
the organization as a whole.

Selling system changes and new proposals

Negotiating budgetary constraints vs. need/want requirements

Evaluating a product offering

Labs exercises

Bare-Metal Provisioning 101

Install CentOS by hand

Install the same node using kickstart

Bare-Metal Provisioning 201

Setup a basic cobbler server

Build a profile

Kickstart a node

Change the profile, re-kickstart the node

Cloud Provisioning 101

Setup a free-tier account with AWS

Spawn a Linux node from the AWS Console

Cloud Provisioning 201

Spawn a Linux node using the AWS API

Attach an Elastic IP and EBS to it

Database 101

Install and start up MySQL

Create basic relational database / tables, using a variety of field types

Grant and revoke privileges

Install Riak

Write (or provide, probably depends on where this fits in relation
to scripting tutorial?) basic tool to insert and retrieve some data.

Database 201

Spawn up second VM/MySQL install

Set up Master->Slave replication

Deliberately break and then fix replication

Set up Master<->Master replication

Introduction to percona toolkit

Set up Riak Cluster, modify the tool from 101 to demonstrate replication.

Database 301

Galera cluster

	Introduction to variables and their meaning. Tuning MySQL configuration (use
mysqltuner.pl as a launch point?), pros and cons of various options.

	Introducing EXPLAIN and how to analyse and improve queries and schema.

	Backup options, mysqldump, LVM Snapshotting, Xtrabackup.

Automation 101

Do you need it? How much and why?

http://www.kitchensoap.com/2012/09/21/a-mature-role-for-automation-part-i/

	Talk basic theory and approach in terms of Idempotency and Convergence.

	Write a bash script to install something as idempotently as possible.

	Discuss Chef and Puppet and while reflecting on the bash script.

Automation - Chef 201

Setup an Opscode account

Setup your workstation as a client to your Opscode account

Download the build-essential cookbook, and apply it to your workstation

Automation - Chef 301

Setup a chef-repo

Write your own cookbook

Automation - Chef 302

Setup your own Chef Server

Write your own resources/providers

Write sanity tests for your code

Automation - Puppet 201

Install Puppet

Install a Forge module using the module tool

Apply it to your local machine

Automation - Puppet 301

Install Puppet

Create your own module

Apply it to your local machine

Package Management 101

Setup a basic YUM or APT repository and put some packages in it

Setup a local mirror of CentOS (or what have you)

Setup a client to install from it

Package Management 201

Build a simple RPM or deb

FPM

Build automation fleets

koji

D

Version Control with Git 101

Open a GitHub account

Create a new repository called ‘scripts’

Place a useful shell script in it

Commit and push

Make a change, commit and push

Create a branch, make a change, commit, and push

Create a pull request and merge the branch into the master branch

	Read Chapters 1-3 of the Pro Git [http://git-scm.com/book] book online

	Work through Code School’s Try Git [http://try.github.com/] online

DNS 101

Install Bind

Configure one zone

Show DNS resolution for an A and a CNAME record in the configured zone

HTTP 101

Install Apache

Configure a virtual host

Display a simple web page

Learning and the Community

Learning and strategies for improvement

Certification

Certification is a broad, overarching topic that could easily span an entire section.
The goal here is to briefly describe some of the most useful and common aspects of certification and their relation to operations specific roles.
There are a wide variation of certifications, some bear more weight and clout than others. Therefore it is important to get a basic understanding of the various certification options available if you choose to pursue certification to help strengthen your career in ops and increase your hiring eligibility with prospective employers.

There is some disagreement as to the value that certifications provide but it is important to make readers aware of the common arguments for and against certifications for purposes of completeness.

One such argument against certifications is that they merely test trivial knowledge which does not translate well into IT ability by memorizing facts and using test dumps in order to pass certain tests.
The counter argument to that philosophy is that many of the higher level certs are much more difficult to obtain than by simply doing brain dumps, as they are typically a combination of written and lab type scenarios.
Often times HR departments will use certifications as a filter and many IT managers and hiring staff believe experience to be a much stronger indicator of performance and ability than certifications.
Another example for preference of certified individuals are government roles or otherwise top level security positions that lean heavily towards higher level security certifications.

Generally, there are a few scenarios that you will see with regards to certification.

	The first scenario, and most common for those just starting out, is the group who use certification as a way to get their foot in the door or to launch their careers in ops.

The types of certifications that these individuals target are typically the entry level, easiest to obtain certifications which will yield the greatest improvement of job prospects for those that obtain them.

	The second scenario that is typical is one where certain certifications are required either for an individuals’ place of employment or are used as a requirement or prerequisite to obtain a position at a company.

Many times, Managed Service Providers (MSP’s) require a certain level of certification amongst their employees to retain their status as a certified partner with some technology companies, like Cisco or Microsoft for example.
These companies are required to have various levels of certification for their employees in certain specific areas and are also required to continually have their employees become re-certified periodically to retain their status as a “partner” to keep various perks and relationships associated with the vendors they certify and partner with.

The following is a partial list of some of the most popular certifications followed by a brief description of the certification and how it can help with a career in a specific area of IT operations.

Comptia

A+ - Designed as an entry level certification, typically geared towards desktop support and help desk type positions.
This certification demonstrates basic ability to troubleshoot hardware and software related problems.

Network+ - This is an entry level network certification.
It covers topics in the realm of networking and is designed for those looking to go into careers as network administrators, network technicians, help desk and desktop support roles.

Security+ - Perhaps the most popular and trusted Comptia certification, the Security+ covers a number of broad topics in IT security including network security, compliance topics, cryptography, access controls and identity management.
This certification is geared towards those in security roles, such as security engineers, consultants, systems/network administrators and security administrators.

Linux+ - Another introductory, entry level certification offered by Comptia.
This certifications covers topics that are commonly seen in the Linux world, such as filesystems, different shell commands, package management, scripting and some other administrative topics unique to Linux environments.
Those who obtain the Linux+ typically qualify for roles like junior network administrators, junior Linux administrators, web administrators and Linux based DBA’s.

One nice things about the Comptia certs is their vendor neutral position in the industry.
The certifications are great for building foundation building with no prior knowledge or experience and are nice stepping stones into jobs as well as other, more advanced certifications.

Cisco

CCNA -

CCNP -

CCIE -

CCDE -

CCIA -

Microsoft

MCITP -

MCSE -

MCM -

Redhat

RHCSA -

RHCE -

VMWare

VCP -

This list is only meant to be used as a guideline, and is by no means comprehensive.
There are many other IT certifications out there and are simply too numerous to cover.
The certifications and their requirements are in constant change and a number of the certifications listed here have gone through numerous revisions, some of which are currently going through revision.
This is one downside to certification.
Because the industry changes so rapidly these certifications can quickly become irrelevant if the necessary time is not taken to keep current with your knowledge and industry technologies.

There is one final note on certification that should be emphasized here.
There are many resources available on the topic of certifications, a quick Google search will more than likely yield a large number of results.
One good site worth mentioning is the TechExams [http://techexams.net] site.
Here you will find many valuable resources and materials to help with pretty much all aspects of certifications.
Their forums are an excellent place to exchange ideas and get quick feedback as well.

Explicit vs Tacit knowledge

Explicit knowledge can be defined as that gained from books or listening to a lecture.
Basically, this type of knowledge would be some form of reading or auditory resource.
It is typically easy to transfer to others, an example would be a manual for driving and operating a car.

Tacit knowledge can be defined and described as knowledge gained from experience, action and practice.
It is typically difficult to transfer this type of knowledge to other people.
A good example would be flying a plane.

Let’s start off by making a distinction between different types of knowledge.
The practice of system administration relies heavily on both types of learning so just one type of experience is not enough to be great in this field.
Essentially, the two knowledge types work hand in hand.
So for example, reading a ton of books, while useful in its own right will not be nearly as effective as reading books and then applying the knowledge gained from hands on experience.
Likewise, if somebody never bothers to pickup a book and relies entirely on hands experiences they will not be as knowledgeable as someone who incorporates both types of knowledge.
It is in the opinion of many in the field that much more can be learned from hands on experience than by books alone.

Types of learning

There has been a good deal of research done on this subject but for the purposes of this post I would like to boil this all down to what are considered the three primary or main styles of learning.
Types of learning play an important role because they work hand in hand with explicit and tacit knowledge.
Each one of these different styles represents a different sort of idiom to the learning experience.
So here they are:

	Visual

	Auditory

	Kinesthetic

It can be argued that employing a good variety of learning and study methods would be the most appropriate way to develop your skills as a sysadmin or any other career related in the operations field.
Instead of saying that one is better than another, one should employ all of these types learning in their own life.
Take a look at yourself and figure out how you learn best and then decide which method(s) are the most and least helpful and then decide how to make these styles work to your advantage.

For example, having a piece of reading material as a reference or as an introduction is great.
If the subject material is difficult and isn’t easily understood, a good next step to take is internalizing things by listening to or watching others.
Finally, with a good enough understanding about a topic, quickly put things into your own experiences.
It is much more easy to remember things when you are able to experience them yourself.

Learning strategies

It is important to highlight some of the major tactics that can be utilized when attempting to learn a new subject.
Here are some different strategies and techniques for learning new and difficult to understand information.
Many of these strategies work together or in tandem so they may described more than once.

The Feynman technique - This is as close to the end all be all that there is when it comes to learning.
Everybody is probably familiar with this one, but am guessing the name is unfamiliar.
This technique is used to explain or go through a topic as if you were teaching it to somebody else that was just learning about it for the first time.
This basically forces you to know what you’re talking about.
If you get stuck when trying to explain a particular concept or idea, make a note of what you are struggling with and research and relearn the material until you can confidently explain it.
You should be able to explain the subject simply, if your explanations are wordy or convoluted you probably don’t understand it as well as you think.

Reading - This is a great technique to get an introduction to a topic by reading up on (and bookmarking) what information you feel to be the most important, whether it be official documentation, RFC’s, books, magazines, respected blogs and authors, etc.
It is a good idea to take very brief notes when something looks like it would useful so to try it out yourself.

Watching/Listening to others - After getting a good idea from reading about a subject it is good to reinforce this by either watching demonstrations, videos, listening to podcasts, lectures or anything else that will show how to get a better idea of how to do something.
An example of this would be to put on a podcast.
It kills time as well as improves knowledge at the cost of nothing.
Very efficient! The same with videos and demonstrations, the only thing holding you back is the motivation.

Try things for yourself - Sometimes this can be the most difficult approach but definitely can also be the most rewarding, there is nothing better than learning things the hard way.
Try things out for yourself in a lab or anywhere that you can practice the concepts that you are attempting to learn and understand.

Take notes - This is important for your own understanding of how things work in a way that you can internalize.
Take notes on simple things like commands you know you won’t remember, related topics and concepts or even just jotting down keywords quickly to Google for later on.
This goes hand in hand with the reading technique described above, just jotting down very simple, brief notes can be really useful.

Communicate with others - There are plenty of resources out there for getting help and for communicating and discussing what you learn with others.
/r/sysadmin would be a good starting point.
IRC channels are another great place to ask questions and get help, there are channels for pretty much any subject you can think of out there.
There are good sysadmin related channels at irc.freenode.net, if you don’t already utilize IRC, take a look.

Come back later - Give your brain some time to start digesting some of the information and to take a step back and put the pieces together to begin creating a bigger picture.
If you have been working on learning a new concept or subject and felt overwhelmed and feel stuck, take a break.
Do something completely different or think about something else entirely and came back to the subject later on with a fresh perspective.
Sometimes these difficult subjects just take time to fully understand so taking breaks and clearing your head can be very useful.

Sleep on it - Have you ever heard of the term before? This may sound crazy but sometimes if there is a particular problem that you’re struggling with, think about it before going to sleep.
By blocking out all outside interference and noise it is much easier think about, come up with fresh perspectives and ideas and often times you will wake up with an answer the next morning.

Break stuff - One of the best ways to incorporate a number of these techniques is to intentionally break stuff in your own setups.
Triple check to be sure that nothing important will get broken first and then go ahead and give it a try.
A much deeper and more intimate relationship with the way things work, why they work and how they get broken occurs when things get broken.
The great thing about using this method is that it is almost always useful for something in the future, whether it be the troubleshooting skills, the Googling skills or the specific knowledge in the particular area that needed to be fixed.

Practice, practice, practice - There is just no way around it. To get better at something one must dedicate time and be prepared to practice like an absolute maniac.
For operations roles and system administration this can partially come from practical job experience but it also comes from dedicated study and lab time.
The hands on component is where most experience and time will come from and becoming better doesn’t just happen, it takes cultivation and time, just like with any other skill.
Stick with it and never stop learning and improving on your skillset through practice and experience.

Things to keep in mind as you learn how to be an engineer

General Tips for improvement

These simple tips can go a really long way.
There is no magical instant way to improve yourself.
If you take nothing else, just remember the following.
The best way to see results and really work on yourself starts by changing your habits, working hard and being consistent.That might not be what you are looking for, but it has been proven to be true time and again that even by making just these few adjustments can go a long way in becoming better at what you do.

Exercise - Just doing a Google search will reveal all the information on the massive benefits of proper exercise.
Even just this one tip can make a huge difference in the way you think and feel.
It is not recommended to completely change the way you live your life when starting out, especially if you are sedentary.
Just make a simple change as something to start with and work from there.
There are many benefits of exercising and working your body regularly will help you improve your mind.

Sleep - This is probably the most important thing to remember when you are trying to work on hacking your mind and improving yourself.
8 hours of sleep seems to be the general rule of thumb, and it should not be overlooked when you are evaluating yourself and your goals for getting to where you want to be.
If you want to wake up early, you need to go to sleep early, it really is as simple as that.
It is also important to be consistent on your sleep schedule so your body can get used to when it should slow down and when it should speed up (even on weekends!).
For example, getting in a routine of winding down at a certain time, say 9 pm every night by reading a book for an hour to train your body that it is time to sleep.
Read until say 10 pm every night if you want to wake up at 6 am to get the sleep consistency your body needs, also giving your body enough time to repair and heal itself to get up and going.

Diet - Also important.
Everybody is different so please take this advice at face value.
As with anything else, it is not recommended to go all out and make completely polar changes to every eating habit at once.
You will crash and burn like many others.So while it may work for some you generally will be safer and more likely to make a lasting impact if you take things slowly.
Work on one thing at a time and gradually make the changes to improve your diet and health.
As an example, start by cutting out something small, like cutting out a particular type of food that isn’t exactly healthy.
Not entirely, but even just cutting back is a good first step.
Basically doing something is better than doing nothing.

Golden rules for careers in ops

	A sysadmin is there to support the customer(s)

	Leave your ego outside

	Listen

	Learn to communicate tech ideas to non-techies

	Learn how to triage

	Take time to document

	Start with the known and move to the unknown

	It isn’t just backup, it’s also restore

	Learn to do post mortems

Other skills that can help you

	Be personable

	Learn to code

	Learn patience

	Learn to budget

Where to look for help in the community

Local user groups

	Local LOPSA Groups: [https://lopsa.org/localprogram]

	BayLISA [http://www.baylisa.org/]

	Back Bay LISA [http://www.bblisa.org/]

Mailing lists and forums

	lopsa-tech@lopsa.org [http://lists.lopsa.org]

	lisa@usenix.org [https://www.usenix.org/lisa/mailinglist]

	systers [women in computing] [http://anitaborg.org/initiatives/systers/]

	ops-education Google group [https://groups.google.com/forum/?hl=en&fromgroups=#!forum/ops-education]

IRC Channels

irc.freenode.net

	#OpsSchool [http://webchat.freenode.net/?randomnick=1&channels=OpsSchool&prompt=1]

	#lopsa [https://lopsa.org/irc]

	##infra-talk [http://infra-talk.org/]

Membership organizations

	USENIX LISA Special Interest Group (SIG) [https://www.usenix.org/lisa]

	League of Professional System Administrators (LOPSA) [https://lopsa.org/]

Conferences and Events

	USENIX Large Installation System Administration (LISA) [http://www.usenix.org]

	Velocity [http://velocityconf.com/]

	Scale [http://www.socallinuxexpo.org/]

	Ohio LinuxFest [http://www.ohiolinux.org/]

	Lopsa-East [http://lopsa-east.org]

	Cascadia [http://casitconf.org]

	VMWorld [http://www.vmworld.com/index.jspa]

	Toorcon [http://toorcon.net/]

	Blackhat [http://www.blackhat.com/us-13/]

	Derby Con [https://www.derbycon.com/]

	Def Con [http://www.defcon.org/]

	Schmoocon [http://www.shmoocon.org/]

	TechEd [http://northamerica.msteched.com/#fbid=arFawgdYKBY]

	Redhat Summit [http://www.redhat.com/summit/]

	Cisco Live! [http://www.ciscolive.com/us/]

	HP Discover [http://h30614.www3.hp.com/discover/home?jumpid=ex_r11754_go_discover]

	EMC World [http://www.emcworld.com/index.htm]

Subreddits

	/r/sysadmin [http://www.reddit.com/r/sysadmin]

	/r/linuxadmin [http://www.reddit.com/r/linuxadmin]

	/r/commandline [http://www.reddit.com/r/commandline]

	/r/networking [http://www.reddit.com/r/networking]

	/r/netsec [http://www.reddit.com/r/netsec]

	/r/vim [http://www.reddit.com/r/vim]

	/r/python [http://www.reddit.com/r/python]

	/r/programming [http://www.reddit.com/r/programming]

	/r/learnprogramming [http://www.reddit.com/r/learnprogramming]

Podcasts

	Security Now! [https://www.grc.com/securitynow.htm] - Security

	The Linux Action Show! [http://www.jupiterbroadcasting.com/tag/linux-action-show/] - Linux focused podcast

	Techsnap [http://www.jupiterbroadcasting.com/] - Various IT topics

	Hak 5 [http://hak5.org/] - Hacking and security related

	Podnutz Pro [http://podnutz.com/pro] - SMB system administration

	Windows Weekly [http://twit.tv/ww] - Windows news

	Packet Pushers [http://packetpushers.net/] - Networking

	RunAs Radio [http://feeds.feedburner.com/RunasRadio] - Various IT topics

	The UC Architects [http://www.theucarchitects.com/] - Exchange, Lync

	The PowerScripting Podcast [http://powerscripting.wordpress.com/] - Powershell

	FLOSS Weekly [http://twit.tv/show/floss-weekly] - All things Open Source

	Stack Exchange Podcast [http://blog.stackoverflow.com/category/podcasts/] - Various Programming and administration topics

	Healthy Paranoia [http://packetpushers.net/category/podcast-post/healthy-paranoia/] - Security

	My Hard Drive Died [http://www.podnutz.com/myharddrivedied] - Anything and everything Hard Drive related

RSS Feeds

ServerFault [http://serverfault.com]

Sign up and participate.
Ask your own questions, but also answer questions that look interesting to you.
This will not only help the community, but can keep you sharp, even on technologies you don’t work with on a daily basis.

Books (and concepts worth “Googling”)

	Time Management for System Administrators, Thomas Limoncelli

	The Practice of System and Network Administration, Thomas Limoncelli

	Web Operations, John Allspaw and Jesse Robbins

	The Art of Capacity Planning, John Allspaw

	Blueprints for High Availability, Evan Marcus and Hal Stern

	Resilience Engineering, Erik Hollnagel

	Human Error, James Reason

	To Engineer is Human, Henry Petroski

	To Forgive Design, Henry Petroski

University Programs that teach Operations

A list of System Administration or Ops related classes or degree granting programs.
It would be well worth your time to compare their syllabi, course outcomes, exercises etc.

	http://www.hioa.no/Studier/TKD/Master/Network-and-System-Administration/

	http://www.hioa.no/Studier/Summer/Network-and-system-administration

	http://www.cs.stevens.edu/~jschauma/615/

	http://goo.gl/4ygBn

	http://www.cs.fsu.edu/current/grad/cnsa_ms.php

	http://www.rit.edu/programs/applied-networking-and-system-administration-bs

	http://www.mtu.edu/technology/undergraduate/cnsa/

	http://www.wit.edu/computer-science/programs/BSCN.html

	http://www.his.se/english/education/island/net–og-kerfisstjornun/ [http://www.his.se/english/education/island/net--og-kerfisstjornun/]

LOPSA has an educator’s list [https://lists.lopsa.org/cgi-bin/mailman/listinfo/educators]

Aleksey’s report on university programs [http://www.verticalsysadmin.com/Report_on_programs_in_System_Administration__25-June-2012.pdf]

See also

A list of System Administration or Ops related classes or degree granting
programs. It would be well worth our time to compare their syllabi, course
outcomes, exercises etc.

	http://www.hioa.no/Studier/TKD/Master/Network-and-System-Administration/

	http://www.hioa.no/Studier/Summer/Network-and-system-administration

	http://www.cs.stevens.edu/~jschauma/615/

	http://goo.gl/4ygBn

	http://www.cs.fsu.edu/current/grad/cnsa_ms.php

	http://www.rit.edu/programs/applied-networking-and-system-administration-bs

	http://www.mtu.edu/technology/undergraduate/cnsa/

	http://www.wit.edu/computer-science/programs/BSCN.html

	http://www.his.se/english/education/island/net–og-kerfisstjornun/ [http://www.his.se/english/education/island/net--og-kerfisstjornun/]

In addition, Usenix SAGE (now LISA) used to have a sage-edu@usenix.org mailing
list, but I don’t know if that is still active. LOPSA has
https://lists.lopsa.org/cgi-bin/mailman/listinfo/educators

http://www.verticalsysadmin.com/Report_on_programs_in_System_Administration__25-June-2012.pdf

Reading List

This is a list of additional material should you wish to dive deeper on particular topics.

	Book

	Author (last name)

	Description

	Network Warrior

	Donahue

	Picks up where CCNA leaves off. Lots of real-world
networking advice.

	DNS & BIND

	Liu & Albitz

	One of the best books available on DNS

	The Practice of System
and Network Administration

	Limoncelli

	Focused more on the traditional IT role, but plenty
for modern sysadmins to learn

	The Practice of Cloud
System Administration

	Limoncelli

	Focused on modern system administration and
devops-y/cloud-y topics

	Time Management for System
Administrators

	Limoncelli

	Learn how to better manage your time. A classic book.

	Web Operations

	Allspaw

	Full of lots of practical advice on web operations.
Limoncelli’s Cloud System Administration is kind of like
an updated and more in-depth version of this.

	Release It!

	Nygard

	Focused more on the developer side of of application
design/deployment, but sysadmins will learn a lot from this
book.

	UNIX and Linux System
Administration Handbook

	Nemeth, et el

	A classic book on UNIX/Linux system administration.
Does not cover modern tooling/practices, but rather more
in-depth teaching of Linux/UNIX operating systems

	The Phoenix Project

	Kim

	A parable about DevOps, that does a great job explaining
what DevOps is all about.

	Continuous Delivery

	Humble & Farley

	Discusses continuous delivery practices, anti-patterns,
and solutions.
One of the few books that brings together many related
topics (CM, VCS, etc) into a cohesive idea of continuous
delivery.

Contributions

Ops School is a community driven effort, and we always need people to
contribute.
Currently we need people who are able to fill in areas in our documentation -
whether it’s a little or a lot, everything helps.

How we’ll organize work

This is a living document. We write headings and their breakdowns as bullet
points. We turn each bullet point into the material we want people to read.
That’s right. The syllabus IS the course. For now, at least, until we find
a better way.

You should start writing the actual material to be taught right into this
syllabus. We’ll worry about formatting and things later.
As you write, remember that “101” material is aimed at people who are working up
to being junior sysadmins. They’re mostly blank slates.

How to contribute

You can find the documentation source on GitHub and send pull requests:

https://github.com/opsschool/curriculum

Please fork the repo to your own account, create a branch, make your changes
there, and issue a pull request from your fork/branch to opsschool:master.
Be descriptive in your commit message for anything non-obvious.

If all of this git and GitHub stuff is a little overwhelming, take a
look at GitHub’s documentation [https://help.github.com]. If you have still have questions
after reading that, please feel free to join #opsschool on
irc.freenode.net and ask your questions there. We’ll be glad to help you
get your patches merged–but please remember that many of us are busy ops
professionals, so we may not respond immediately.

If you’d like to join the mailing list, email avleen@gmail.com.

Rewards for contributions

We have a special reward for reaching either of the following goals with your
contributions:

	10 pull requests totaling 50 or more lines changed

	1 recorded Ops School video

For completing either of these, you will receive a dozen freshly baked cookies,
made fresh for you by a professional baker, and a 3-inch die-cut sticker of the
Ops School logo.

Once you reach either of these, please fill in the OpsSchool rewards form [https://docs.google.com/forms/d/1XCNPKgqtK2FyB2zTUBW_aYVHUnhao9-CPhL2pB6ZGyU/viewform] and
we will get your reward over to you!

Ops School Videos

In collaboration with O’Reilly Media, we are filming the Ops School curriculum
to provide another method of learning for students. Filming happens
approximately every 3 months in New York or Silicon Valley.

O’Reilly is publishing the videos online, in individual form and in package
form. Any profits which would be made by Ops School are donated to non-profit
organisations which aid in learning for low-income persons.

Video can be short (10-20 mins), or longer. Depending on the content in the
video, some presenters choose to use slides, while others prefer screen-casting
live demonstrations. Some videos may not need any supporting material at all!

The next scheduled filming is at the Santa Clara Hyatt, from Monday June 17th
2013 to Friday June 21st 2013. Filming slots are available all day.

The topics which have already been filmed are:

	Boot Process 101

	DNS 101

	Filesystems 101

	MySQL 101

	Nagios 101

	Networking 101

	Outage Investigation 101

	Package Management 101

	Shells 101

	SSH 101

	Application Level Monitoring

	Careers In Operations

	Operable Service - What People Expect From an Operable Service

	Productivity Tools and Techniques

	The /proc Filesystem

	Web Flow - The Life of a Web Request

If you are interested in filming, please contact Avleen Vig (avleen#gmail.com)
or open an issue on the Github project.

How to write sections

In order to help students learn as much as possible, we are taking the following
approach to the curriculum (this isn’t a hard-and-fast rule, but an encouraged
guideline wherever possible):

	Approach your writing in three steps:

	Tell students what they’re going to learn

	Teach them what they need to know

	Tell them what they have learnt

	As much as possible, treat this as an interactive exercise. For example if you
are writing about virtual machines, don’t just write about virtual machines.
Have the student create a virtual machine, and then explain what just
happened.
Don’t tell students that package managers install packages, have them install
a few packages and then explain how the package manager did its thing.

Please read the Conventions topic for some style guideline and preferences.

Overwriting existing content

There are times when you will want to update or replace sections of text written
by others. When doing so, follow these guidelines to ensure your changes are
integrated smoothly:

	Submit your pull request

	Reference the original author in your commit

We’ll wait a few days (up to one week) to let the original author comment, if we
feel there may be anything contentious in the commit. For most simple and
straightforward commits, we’ll simply accept the commit.

Credits

If you contribute to this document and would like your name in lights (or, at
least, written down somewhere) please add it here along with an email address
and any affiliation:

	Name

	Company

	Avleen Vig <avleen@etsy.com>

	Etsy, Inc

	Patrick McDonnell

	

	Michael Rembetsy <mcr@etsy.com>

	Etsy, Inc

	Magnus Hedemark <magnus@yonderway.com>

	Wireless Generation

	Ariel Jolo <ajolo@sysarmy.com.ar>

	sysARmy

	Ryan Frantz <ryanleefrantz@gmail.com>

	Crabby Admins (www.crabbyadmins.org)

	Mike Fiedler <miketheman@gmail.com>

	Datadog

	Nathan Milford <nathan@milford.io>

	Outbrain, Inc.

	Patrick Cable <pc@pcable.net>

	

	Benjamin Krueger <benjamin@seattlefenix.net>

	Sourcefire, Inc

	Mårten Gustafson <marten.gustafson@gmail.com>

	

	Phil Hollenback <philiph@pobox.com>

	

	Adam Jacob <adam@opscode.com>

	Opscode, Inc.

	Mark Imbriaco <mark@github.com>

	GitHub

	James Turnbull <james@lovedthanlost.net>

	Puppet Labs

	Scott Nyce <snyce@codetwit.com>

	TiVo, Inc.

	Christian Paredes <cp@redbluemagenta.com>

	Amazon

	Jan Schaumann <jschauma@netmeister.org>

	

	Stephen Balukoff <sbalukoff@bluebox.net>

	Blue Box Group

	Evan Pettrey <jepettrey@gmail.com>

	LOPSA

	Khalid Maqsudi <khalid7621@hotmail.com>

	Ashford.com

	Paul Graydon <paul@paulgraydon.co.uk>

	

	Harold “Waldo” Grunenwald

	

	Martin Gehrke <martin@teamgehrke.com>

	LOPSA

	John Boris <jborissr@gmail.com>

	LOPSA

	John Dewey <john@dewey.ws>

	AT&T

	Carolyn Rowland <unpixie@gmail.com>

	

	Jordan Dea-Mattson <jdm@dea-mattson.com>

	Numenta, Inc.

	Sean Escriva <sean.escriva@gmail.com>

	Heavy Water Ops

	Adam Compton <comptona@gmail.com>

	

	Franck Cuny <franck@lumberjaph.net>

	SAY Media

	Chris Nehren <cnehren@omniti.com>

	OmniTI

	Brian Rak <dn@devicenull.org>

	

	Divij Rajkumar <drajkuma1@gmail.com>

	

	Aslan Brooke <aslandbrooke@yahoo.com>

	ZynxHealth.com, InfoQ.com

	Glen Kaukola <gkaukola@cs.ucr.edu>

	

	Spencer Krum <krum.spencer@gmail.com>

	UTi Worldwide Inc.

	Jeremy Grosser <jeremy@synack.me>

	Uber Technologies, Inc.

	Hugo Landau <hlandau@devever.net>

	

	Konark Modi <modi.konark@gmail.com>

	MakeMyTrip.com

	Josh Reichardt <josh.reichardt@gmail.com>

	thepracticalsysadmin.com

	Ben Reichert <ben@benreichert.com>

	

	Simon Aronsson <simon.aronsson@gmail.com>

	itshale.com, simonaronsson.se

	Andrew Langhorn <andrew@ajlanghorn.com>

	

	Abubakr-Sadik Nii Nai Davis <dwa2pac@gmail.com>

	

	Mike Julian

	

	Bram Verschueren

	

Conventions

This set of documents uses a number of conventions throughout for ease
of understanding. Contributors should be familiar with everything
described here, and optimally contributions will be compared to what’s
here for uniformity.

Style Guide

See Style Guide for more.

Sample Network

A sample network makes explaining networking topics easier for both the
teacher and the student. The teacher doesn’t need to spend time creating
an example network to explain a topic, and the student doesn’t need to
learn a new network for every section. To this end, the curriculum has
adopted a default sample network. The goal is to construct a
hypothetical network that resembles what one is likely to find in a
well-constructed production environment. This means firewalls, load
balancers, separation of concerns between different machine roles, and
so on.

Topography

The network is hosted in a datacenter, with the subnet of 10.10.10.0 and a
subnet mask of 255.255.255.0. This yields an IP address range of 10.10.10.0
through 10.10.10.255. In front of everything else on the network are two
firewall machines, fw-1 and fw-2. These dual-homed machines have the LAN
addresses 10.10.10.1 and 10.10.10.2, respectively. The network also has two
DNS servers, dns-1 and dns-2, occupying 10.10.10.3 and 10.10.10.4. In between
the firewalls and the rest of the LAN are two load balancers, lb-1 and lb-2.
These machines share the rest of the public address space and have the internal
LAN addresses 10.10.10.5 and 10.10.10.6.

Beyond this, there are two machines that function as jumphosts into the
network (independent of any VPN or the like). These machines also host
the source repositories, configuration management, and similar services.
Their LAN addresses are 10.10.10.7 and 10.10.10.8, and their hostnames
jump-1 and jump-2. In addition, there is an LDAP server, ldap-1, at
10.10.10.9.

In terms of the application stack, there are four Web servers
(10.10.10.10-10.10.10.13), two app servers (10.10.10.14-10.10.10.15), two
database servers (10.10.10.16-10.10.10.17), two DNS servers
(10.10.10.18-10.10.10.19), and a message queue (10.10.10.20). The Web server
hostnames are web-1 through web-4; the app servers, app-1 and app-2; the
databases, db-1 and db-2; the message queue, mq-1.

Todo

Mainly for @apeiron: Simplify the topography description, possibly with use of a table to describe IP assingments

This is a lot to conceptualize all at once; a diagram will elucidate the
architecture.

[image: digraph network { "firewall x2" [shape = box]; "load balancer x2" [shape = box]; "app stack" [shape = box]; "jumphost x2" [shape = box]; "config mgmt" [shape = box]; "dns" [shape = box]; "mq" [shape = box]; "internet" [shape = ellipse]; "internet" -> "dns"; "internet" -> "firewall x2" -> "load balancer x2" -> "app stack"; "firewall x2" -> "jumphost x2" [dir = both]; "jumphost x2" -> {"app stack"; "config mgmt"; "load balancer x2"; "mq"; "ldap"}; "app stack" -> "config mgmt" [dir = both]; "app stack" -> {"ldap"; "mq"}; "firewall x2" -> "dns"; "load balancer x2" -> "dns"; "app stack" -> "dns"; "jumphost x2" -> "dns"; "config mgmt" -> "dns"; "mq" -> "dns"; }]

Style Guide

When writing documentation, we should strive to keep the style used consistent, clear and understandable across all topics.

These documents are written in reStructuredText [http://docutils.sourceforge.net/rst.html] with Sphinx [http://sphinx-doc.org/] directives.

The style used in writing here should follow the guidelines in the following sections.
This document attempts to conform to the guidelines themselves, and may be used as a reference.
You may view this document’s source by clicking “Show Source” on the left-hand menu bar.

Editing

This section attempts to guide the author on ways to edit the source documentation and preserve project style so many editors can collaborate efficiently.
Guides on spacing, heading layout and topic structure will be established here.

Spacing

	Do not add two spaces after terminal punctuation, such as periods.

The extra space will be ignored when rendered to HTML, so strive for consistency while editing.

	Remove trailing whitespace from your lines.

Almost any modern text editor can do this automatically, you may have to set your editor to do this for you.
Reasoning is that:

	it makes git unhappy

	there’s no usefulness in those extra characters

	when others edit with whitespace-removing editors, their commit can get polluted with the removals instead of the content

Basically, don’t leave a mess for someone else to clean up.

	Start sentences on new lines.

Start each new sentence of the same paragraph on the immediately following line.
Historically, lines had been requested to be wrapped at 80 characters.
In our modern day and age of powerful text editors this may no longer be very useful, rather asking the author to provide concise text is more valuable.
If a sentence is very long, consider how you might rewrite it to convey the idea across multiple sentences.
In general, try to consider how long the line would appear in a text editor at 1024 pixels wide, 12pt font (around 140 characters total).

	Sectional spacing should follow these guidelines:

	1 blank line after any section heading, before content starts

	2 blank lines after an H1/H2 section ends

	1 blank line after any other section ends

When in doubt, leave one blank line.

	Leave one (1) blank line at the end of every file.

Showing Examples

Very frequently, we may want to show the reader an example of code or console output.
Sphinx provides language-specific highlighting [http://sphinx-doc.org/markup/code.html], so instead of using a standard literal block (::), use the more explicit code-block:: syntax.

An example:

.. code-block:: ruby

require 'date'
today = Date.today
puts "Today's date is #{today}"

This would render so:

require 'date'
today = Date.today
puts "Today's date is #{today}"

This highlighted version is superior, and more easily understood.

Please use the language being displayed for the correct syntax.
For examples of console output, use console.
When showing pseudo-code or items that do not fit a language or console, use none.

When showing shell commands, please use the following standard prompts for user and root:

user@opsschool ~$ uptime
 14:17:34 up 12:05, 16 users, load average: 0.34, 0.16, 0.05

root@opsschool ~# uptime
 14:18:15 up 12:05, 16 users, load average: 0.22, 0.15, 0.06

These prompts can be set with the following PS1 entries:

export PS1='user@opsschool \w$ '
export PS1='root@opsschool \w# '

Glossary

	BIOS

	A set of computer instructions in firmware that control input and
output operations.

	CLI

	Command Line Interface

	Domain Specific Language

	A special purpose programming language dedicated to a particular
problem area, e.g. SQL is a domain specific language for retrieval
of data from a database.

	EPEL

	Common acronym for Extra Packages for Enterprise Linux. These are
typically included in Fedora Linux, and provided for RedHat, CentOS,
and other RPM-based distributions. The project’s homepage is
here: FedoraProject:EPEL [http://fedoraproject.org/wiki/EPEL].

	GUI

	Pronounced “gooey”, this is an acronym for a Graphical User Interface.
This is distinctly different from a CLI, in that the GUI typically can contain more complex visual interactions.
Read more here: Wikipedia:GUI [http://en.wikipedia.org/wiki/Graphical_user_interface].

	MAC

	Pronounced as “mack” and often used as a noun referring to a network
device’s Media Access Controller (MAC) address. A MAC address is a
globally unique number assigned to each interface in an Ethernet network
and used to direct Ethernet frames between source and destination
devices.

	OSI

	Open Systems Interconnection (OSI) is an effort to develop
standards-based computer networking protocols in order to allow
networking equipment from different vendors to interoperate without
relying on implementation of competing proprietary protocols. The OSI is
best known for the development of the standard seven-layer OSI model for
describing layers of abstraction into which the various networking
protocols are categorized.

	POSIX

	An acronym for “Portable Operating System Interface”, is a family of
standards specified by the IEEE for maintaining compatibility between
operating systems. POSIX defines the application programming interface
(API), along with command line shells and utility interfaces, for
software compatibility with variants of Unix and other operating systems.
Read more here: Wikipedia:POSIX [http://en.wikipedia.org/wiki/POSIX].

	RFC

	The RFC documents (Request for Comments) are a series of Internet
standards, best common practices, and related documents describing how
networked computers communicate. This document series provides the
standards for how the Internet and many other related technologies
interrelate and interoperate.

	VLAN

	An acronym for “Virtual Local Area Network”; a single physical switch
can be divided into multiple “virtual” switches via the configuration
of VLANs, and assigning individual switchports into a given VLAN.
Each VLAN represents a Ethernet broadcast domain (boundary); best
practices dictate that a single IP (Layer 3) network be mapped to a
single VLAN. Packets must be routed between VLANs (either by an
outboard router, or by an internal router in what is known as a
“Layer 3 switch.”)

Index

 B
 | C
 | D
 | E
 | G
 | M
 | O
 | P
 | R
 | V

B

 	
 	BIOS

C

 	
 	CLI

D

 	
 	Domain Specific Language

E

 	
 	EPEL

G

 	
 	GUI

M

 	
 	MAC

O

 	
 	OSI

P

 	
 	POSIX

R

 	
 	RFC

 	RFC 1112

 	RFC 1519

 	RFC 1796

 	RFC 1918

 	RFC 2026

 	RFC 2119

 	RFC 2460

 	RFC 5000

 	RFC 7231

 	RFC 768

 	RFC 791

 	RFC 792

 	RFC 793

 	RFC 882

 	RFC 920

V

 	
 	VLAN

 nav.xhtml

 Table of Contents

 		
 Ops School Curriculum

 		
 Introduction

 		
 Goals and Focus

 		
 Syllabus layout

 		
 Contributions

 		
 How we’ll organize work

 		
 How to contribute

 		
 Rewards for contributions

 		
 Ops School Videos

 		
 How to write sections

 		
 Overwriting existing content

 		
 Credits

 		
 Guidelines

 		
 Careers in Operations

 		
 Deciding a career path

 		
 Generalized career paths

 		
 Operations Engineer

 		
 Operations Manager

 		
 Specialized career paths

 		
 Systems Administrator

 		
 Database Administrator

 		
 Network Engineer

 		
 Security Engineer

 		
 Storage Engineer

 		
 High Performance Computing Engineer

 		
 How to become an operations engineer

 		
 Sysadmin 101

 		
 What is Systems Administration?

 		
 Comparing Stories

 		
 What is Development?

 		
 Contrasting Development and Operations

 		
 History of Development and Operations

 		
 What System Administration Isn’t

 		
 Problem Solving

 		
 Ethics

 		
 Unix fundamentals 101

 		
 File systems

 		
 Background

 		
 Navigating the filesystem

 		
 Working with disks in Linux

 		
 Configuring your drive with partitions

 		
 Formatting partitions with new file systems

 		
 Mounting a filesystem

 		
 Filesystem options

 		
 How filesystems work

 		
 Inodes

 		
 File system layout

 		
 Fragmentation in unix filesystems

 		
 Filesystem objects

 		
 Shells

 		
 What is a shell?

 		
 Introduction to Bash

 		
 Shell Fundamentals

 		
 Package management

 		
 Workflow

 		
 What is a package manager?

 		
 RPM and yum (RedHat, CentOS, Fedora, Scientific Linux)

 		
 dpkg and APT (Debian, Ubuntu)

 		
 The Boot Process

 		
 Power Supply Unit

 		
 BIOS and CMOS

 		
 POST tests

 		
 Reading the Partition Table

 		
 The Bootloader

 		
 The Kernel and the Ramdisk

 		
 OS Kernel and Init

 		
 Runlevels

 		
 Getty

 		
 Useful shell tools

 		
 The Unix Philosophy

 		
 Working with your system

 		
 Extracting and manipulating data

 		
 Crontab

 		
 What is a “crontab”?

 		
 The crontab command

 		
 What are some common “cron expressions”?

 		
 Advanced “crontab”

 		
 Footnotes

 		
 Unix fundamentals 201

 		
 Kernel tuning

 		
 Signals

 		
 What Are Signals?

 		
 How Do Signals Work?

 		
 How To Send a Signal to a Program

 		
 List Of Posix 1990 Signals

 		
 Syscalls

 		
 Using strace

 		
 Booting over the network

 		
 TFTP

 		
 PXE

 		
 Basic Setup Process

 		
 iPXE Setup

 		
 PXELINUX setup

 		
 /bin/init and its descendants

 		
 init

 		
 systemd

 		
 upstart

 		
 SMF

 		
 daemontools

 		
 Looking at system metrics

 		
 vmstat

 		
 iostat

 		
 systat

 		
 dstat

 		
 sar

 		
 MS Windows fundamentals 101

 		
 Text Editing 101

 		
 A little history

 		
 vi basics

 		
 A Note About Vimtutor

 		
 vi Modes

 		
 Hello, world!

 		
 Cursor motion

 		
 Text insertion commands

 		
 Text removal commands

 		
 Undo and Redo

 		
 Professional Fonts (vim?)

 		
 Syntax Highlighting (vim)

 		
 Directory navigation (NERDtree)

 		
 Edit/Open/Close Files

 		
 Edit/Open/Close Buffers (vim)

 		
 Text Editing 201

 		
 Vim

 		
 Window Splitting

 		
 Plugins

 		
 Emacs

 		
 Edit/Open/Close Files

 		
 Edit/Open/Close Buffers

 		
 Directory Navigation

 		
 Syntax Highlighting

 		
 Line numbers

 		
 Window Splitting

 		
 Buffers

 		
 References

 		
 Tools for productivity

 		
 Terminal emulators

 		
 OSX: iTerm2

 		
 Linux: Gnome Terminator

 		
 SSH

 		
 Common: ssh

 		
 Windows: PuTTY

 		
 Android: Connectbot

 		
 iOS: iSSH

 		
 SSH Use Cases

 		
 Single port on foreign machine firewalled

 		
 Tunnel all traffic through remote machine

 		
 Reverse Tunneling

 		
 Tunneling stdin and stdout

 		
 Multiplexers

 		
 GNU Screen

 		
 Tmux

 		
 byobu

 		
 References

 		
 Shell customisations

 		
 How to customise your shell

 		
 Changing your prompt

 		
 Mosh

 		
 Examples

 		
 References

 		
 Ticketing systems

 		
 Note-taking

 		
 Wiki

 		
 EverNote

 		
 OneNote

 		
 Security 101

 		
 Authentication in unix

 		
 Adding and deleting users and groups

 		
 Standard unix filesystem permissions

 		
 PAM

 		
 Chroot, jails and containers

 		
 Sudo (or, “Why you should not log in as root”)

 		
 History and Lore

 		
 The Morris Worm

 		
 /bin/false is not security

 		
 Security 201

 		
 Centralised accounts

 		
 LDAP and Kerberos

 		
 Active Directory

 		
 NIS, NIS+, YP, Hesiod

 		
 Firewalls and packet filters

 		
 host vs network

 		
 An old skool, real world example:

 		
 Stateful vs stateless

 		
 IPTables: Adding and deleting rules

 		
 pf: Adding and deleting rules

 		
 Public Key Cryptography

 		
 Using public and private keys for SSH authentication

 		
 Two factor authentication

 		
 Building systems to be auditable

 		
 Data retention

 		
 Log aggregation

 		
 Log and event reviews

 		
 Role accounts vs individual accounts

 		
 Network Intrusion Detection

 		
 Host Intrusion Detection

 		
 Defense practices

 		
 Risk and risk management

 		
 Compliance: The bare minimum

 		
 Dealing with security incidents

 		
 ACLs and extended attributes (xattrs)

 		
 SELinux

 		
 AppArmor

 		
 Data placement

 		
 Additional reading

 		
 Troubleshooting

 		
 Methodologies

 		
 Triaging with differential diagnosis

 		
 Preparing your toolbelt

 		
 Walk through of a diagnosis

 		
 Recent changes

 		
 Learning common errors

 		
 Working effectively during a crisis

 		
 The Importance of Procedure

 		
 Non-technical skills

 		
 Networking 101

 		
 The RFC Documents

 		
 Important RFCs

 		
 OSI 7-layer model (OSI Reference Model)

 		
 TCP/IP (ARPA) 4-layer model

 		
 IP Addressing

 		
 IPv4

 		
 IPv6

 		
 TCP vs UDP

 		
 Subnetting, netmasks and CIDR

 		
 Classful addressing

 		
 Private address space (RFC 1918)

 		
 Static routing

 		
 NAT

 		
 Networking cable

 		
 Copper

 		
 Fiber

 		
 Networking 201

 		
 VLANs, 802.1q tagging

 		
 Spanning Tree

 		
 Routing

 		
 Static Routing

 		
 Dynamic routing protocols (RIP, OSPF, BGP)

 		
 ACLs

 		
 Network Bonding (802.3ad / LACP link aggregation)

 		
 IOS switch configuration

 		
 GRE and other tunnels

 		
 Multi-homed hosts

 		
 Similarities and differences between IPv4 and IPv6 networking

 		
 Implications of dual-stack firewalls (especially under Linux)

 		
 Multicast uses and limitations

 		
 Latency vs. Bandwidth

 		
 VPNs

 		
 IPSec

 		
 SSL

 		
 Network Troubleshooting

 		
 ping

 		
 telnet

 		
 iproute / ifconfig

 		
 ss

 		
 traceroute

 		
 mtr

 		
 iftop

 		
 iperf

 		
 tcpdump

 		
 Troubleshooting layer 1 problems

 		
 Common Network metrics

 		
 Electromagnetic interference (EMI)

 		
 Testing copper cabling

 		
 Fiber errors

 		
 Differences in perspective: network engineering and systems administration

 		
 Common services

 		
 System daemons 101

 		
 NTP

 		
 Kernel daemons

 		
 Filesystem daemons

 		
 udevd

 		
 crond

 		
 atd

 		
 sshd

 		
 DNS 101

 		
 A Brief History of DNS

 		
 Terminology

 		
 How DNS works

 		
 Resource types

 		
 An example zonefile

 		
 Host-specific DNS configuration

 		
 TTLs

 		
 Forward and reverse DNS

 		
 Useful DNS tools

 		
 DNS 201

 		
 Architecture/design choices

 		
 DNSSEC

 		
 DHCP

 		
 Tools: ISC dhcpd

 		
 Protocol

 		
 dhcp helper

 		
 Defining classes, leases

 		
 Options

 		
 HTTP 101 (Core protocol)

 		
 Request

 		
 Response

 		
 Tools: Speaking http with telnet/netcat/curl

 		
 Apache, nginx

 		
 HTML

 		
 Virtual hosting

 		
 HTTP 201 (Application Servers & Frameworks)

 		
 Java

 		
 node.js / Server-side Javascript

 		
 Perl

 		
 PHP

 		
 Ruby

 		
 Python

 		
 SMTP 101

 		
 Tools: Speaking smtp with telnet/netcat

 		
 Risks / Dangers / Open relays

 		
 Protocol

 		
 MTAs (forwarding, smart hosts, etc.)

 		
 SMTP 201

 		
 Anti=Spam

 		
 Reliable Mail Delivery

 		
 Basic Etiquette

 		
 Authentication (SPF, DKIM)

 		
 Bounce Management

 		
 Feedback Loops

 		
 Reputation Management

 		
 Advanced routing

 		
 Hosted services = why they are good/bad/ugly

 		
 Identity Management 101

 		
 LDAP

 		
 Active Directory

 		
 OpenLDAP

 		
 Directory389

 		
 NIS

 		
 Active Directory 101

 		
 What is Active Directory?

 		
 What is Active Directory used for?

 		
 You mention “separate components”; what is Active Directory composed of?

 		
 What specific services does Active Directory provide?

 		
 Group Policy

 		
 DNS

 		
 Kerberos Key Distribution Center

 		
 DHCP

 		
 Best Practices for managing an Active Directory installation

 		
 Cleaning up Unneeded Objects

 		
 Making Backups

 		
 Replication Health

 		
 Active Directory 201

 		
 Detailed Breakdown of Active Directory Components/Services

 		
 NTDS, the database

 		
 Kerberos KDC

 		
 DNS

 		
 DHCP

 		
 Global Catalog

 		
 FSMO Roles

 		
 Advanced Active Directory Maintenance

 		
 Remote Filesystems 101

 		
 NFSv3

 		
 iSCSI

 		
 SAMBA/CIFS

 		
 Remote Filesystems 201

 		
 GlusterFS

 		
 NFSv4

 		
 Netatalk / AFP

 		
 S3

 		
 Programming 101

 		
 Shell scripting basics

 		
 Specifying the interpreter

 		
 Portability Considerations

 		
 Variables

 		
 Control Statements

 		
 functions

 		
 arrays

 		
 style

 		
 Redirection

 		
 I/O

 		
 Pipes

 		
 stderr vs. stdout

 		
 /dev/null and /dev/zero

 		
 Regular Expressions

 		
 Sed & awk

 		
 GIGO

 		
 Validating input

 		
 Validating output

 		
 Trapping & handling exceptions with grace

 		
 Programming 201

 		
 Common elements in scripting, and what they do

 		
 Syntax

 		
 Variables

 		
 Common data structures

 		
 Functions

 		
 Objects

 		
 C (A very basic overview)

 		
 The main loop

 		
 Libraries & Headers

 		
 #include

 		
 The Compiler

 		
 The Linker

 		
 Make

 		
 Ruby

 		
 Running Ruby Code

 		
 Syntax

 		
 Variables

 		
 Common data structures

 		
 Functions

 		
 Objects and Classes

 		
 Rubygems

 		
 Databases

 		
 Python

 		
 Syntax

 		
 Variables

 		
 Common data structures

 		
 Functions

 		
 Objects

 		
 Version Control

 		
 Git

 		
 SVN

 		
 CVS

 		
 API design fundamentals

 		
 RESTful APIs

 		
 JSON / XML and other data serialization

 		
 Authentication / Authorization / Encryption and other security after-thoughts.

 		
 Continuous Integration

 		
 Hardware 101

 		
 Hardware Types

 		
 Rackmount

 		
 Blades

 		
 SANs

 		
 SAN Array

 		
 NAS

 		
 Basic server architecture

 		
 CPU

 		
 RAM

 		
 Motherboard

 		
 Bus

 		
 Disk controllers

 		
 Network devices

 		
 BIOS/UEFI

 		
 PCI-E Cards

 		
 Disk management

 		
 Arrays

 		
 RAID/ZFS

 		
 Logical Volume Management

 		
 Performance/Redundancy

 		
 RAID/ZFS

 		
 Power

 		
 Troubleshooting

 		
 Remote management (IPMI, iLO, DRAC, etc)

 		
 Common MCE log errors

 		
 System burn-in

 		
 Datacenters 101

 		
 Power budgets

 		
 A/B power and cascading outages

 		
 Cooling budgets

 		
 You will be judged by the tidiness of your rack

 		
 Machine and cable labeling

 		
 Traditional naming conventions

 		
 Datacenters 201

 		
 Networking many racks

 		
 Power

 		
 N+1, N+2 power

 		
 Fused vs usable

 		
 calculations

 		
 Cooling

 		
 N+1, N+2

 		
 Cooling efficiency

 		
 Cooling failures

 		
 Physical security and common security standards compliance requirements

 		
 Suggested practices

 		
 Access control

 		
 Datacenters 301

 		
 Power

 		
 PUE (Power Usage Effectiveness)

 		
 3 phase power

 		
 DC power

 		
 Increasing cooling efficiency

 		
 CFM

 		
 Hot aisle / cold aisle design fundamentals

 		
 Hot aisle / cold aisle containment

 		
 Chimneys

 		
 Design Options

 		
 Raised floor (18in & 36in)

 		
 Virtualization 101

 		
 Intro to virtualization technologies

 		
 What problems is virtualization good at solving, what isn’t it good at.

 		
 Hardware assisted vs Paravirtualization

 		
 Hypervisors - overview, some comparison

 		
 Container-based virtualization (Jails, Containers/Zones, OpenVZ)

 		
 The Cloud

 		
 The different types of “cloud”

 		
 Cloud providers comparison. Pros & Cons

 		
 Cloud management tools and APIs

 		
 Virtualization 201

 		
 Managing virtualized infrastructures (Private clouds)

 		
 Balancing CPU, Memory, and IO for guests

 		
 Leveraging virtualization for development

 		
 Leveraging virtualization for production

 		
 Security implications of virtualization

 		
 Logs 101

 		
 Common system logs & formats

 		
 Standard Error

 		
 Log files

 		
 Syslog

 		
 Log Rotation

 		
 Logs 201

 		
 Centralized logging

 		
 Syslogd, Rsyslog

 		
 Benefits for developers

 		
 Log parsing

 		
 Search & Correlation

 		
 Databases 101 (Relational Databases)

 		
 What is a Database?

 		
 What is a Relational Database?

 		
 Why We Use Databases?

 		
 What is SQL?

 		
 SQL shell

 		
 MySQL

 		
 Creating databases

 		
 Specialized Create Database Commands

 		
 Creating users

 		
 Specialized Create User Commands

 		
 Create Tables

 		
 Alter Table

 		
 Drop Table

 		
 Data Type

 		
 Granting privileges

 		
 Removing Privileges

 		
 Basic normalized schema design

 		
 Select, Insert, Update and Delete

 		
 SELECT

 		
 INSERT

 		
 UPDATE

 		
 DELETE

 		
 Pro Tips

 		
 Databases 201

 		
 Database Theory

 		
 ACID

 		
 CAP theorem

 		
 High Availability

 		
 Document Databases

 		
 MongoDB

 		
 CouchDB

 		
 Hadoop

 		
 Key-value Stores

 		
 Riak

 		
 Cassandra

 		
 Dynamo

 		
 BigTable

 		
 Graph Databases

 		
 FlockDB

 		
 Neo4j

 		
 Application Components 201

 		
 Message Queue Systems

 		
 Further Readings

 		
 Message Brokers

 		
 RabbitMQ

 		
 Apache ActiveMQ

 		
 Memory Caches

 		
 Memcached

 		
 Redis

 		
 Specialized Caches

 		
 Varnish

 		
 nginx+memcached

 		
 Load Balancing

 		
 Why do we use load balancers?

 		
 Scalability

 		
 Reliability

 		
 Agility

 		
 Application implications

 		
 Backend

 		
 Pools

 		
 Balancing algorithms

 		
 Session Affinity

 		
 Local & ISP caching

 		
 SSL Termination and Offloading

 		
 Balancing vs. Failover (Active / Passive)

 		
 Health Checks

 		
 Non-HTTP use cases

 		
 Software

 		
 Apache

 		
 Nginx

 		
 HAProxy

 		
 Hardware

 		
 BIG-IP

 		
 Netscaler

 		
 Multi-dc

 		
 Anycast

 		
 DNS GSLB

 		
 CDN’s

 		
 Monitoring, Notifications, and Metrics 101

 		
 History: How we used to monitor, and how we got better (monitors as tests)

 		
 Perspective (end-to-end) vs Introspective monitoring

 		
 Metrics: what to collect, what to do with them

 		
 Common tools

 		
 Syslog (basics!)

 		
 Syslog-ng

 		
 Nagios

 		
 Graphite

 		
 Ganglia

 		
 Munin

 		
 RRDTool / cacti

 		
 Icinga

 		
 SNMP

 		
 Collectd

 		
 Sensu

 		
 Diamond

 		
 Logster

 		
 Monitoring, Notifications, and Metrics 201

 		
 Dataviz & Graphing

 		
 Graphite, StatsD

 		
 What are Graphite and StatsD?

 		
 Graphite

 		
 StatsD

 		
 Setting it up and make it show pretty graphs

 		
 Concepts

 		
 Schema

 		
 Management interface

 		
 What have we done and where to go from here

 		
 Caveats

 		
 Dashboard: Info for ops and info for the business

 		
 Tasseo

 		
 Dashing

 		
 GDash

 		
 Third-party tools

 		
 Datadog

 		
 Boundry

 		
 NewRelic

 		
 Librato Metrics

 		
 Circonus

 		
 Geckoboard

 		
 Business Continuity Planning

 		
 Backups

 		
 Designing a backup policy

 		
 Designing a Backup System

 		
 Verification

 		
 Security implications

 		
 Recovery basics

 		
 Secure data destruction

 		
 Information Lifecycle Management in relation to backups

 		
 Outages

 		
 Postmortems

 		
 Disaster Recovery

 		
 Planning

 		
 Execution

 		
 Architecture 101

 		
 How to make good architecture decisions

 		
 Patterns and anti-patterns

 		
 Introduction to availability

 		
 Introduction to scalability

 		
 Architecture 201

 		
 Service Oriented Architectures

 		
 Fault tolerance, fault protection, masking, dependability fundamentals

 		
 Fail open, fail closed

 		
 Perspective: node, network, cluster, application

 		
 Caching Concerns

 		
 Static assets

 		
 Data

 		
 Eviction and replacement policies and evaluation

 		
 Approaches

 		
 Crash only

 		
 Synchronous vs. Asynchronous

 		
 Business continuity vs. Disaster Recovery

 		
 Designing for Scalability: Horizontal, Vertical

 		
 Simplicity

 		
 Performance

 		
 Tiered architectures

 		
 MTTR > MTBF

 		
 Configuration Management 101

 		
 A Brief History of Configuration Management

 		
 Idempotence

 		
 Convergent and Congruent systems

 		
 Direct and Indirect systems: ansible, capistrano

 		
 Chef

 		
 Configuration Management 201

 		
 Ansible

 		
 Puppet

 		
 Puppet Agent/Master Communication

 		
 Installation

 		
 Manifests

 		
 Resources

 		
 Anatomy of a Resource

 		
 Resource Type

 		
 Puppet Apply

 		
 Package/File/Service

 		
 CFEngine 3

 		
 SaltStack

 		
 Installation

 		
 Configuration

 		
 Remote execution

 		
 Writing configuration files

 		
 Capacity Planning

 		
 Fundamentals of capacity planning

 		
 Resource usage investigation and exploration

 		
 Finding ceilings

 		
 Forecasting

 		
 Linear and nonlinear trending and forecasting (“steering by your wake”)

 		
 Details of automatic forecasting and scaling

 		
 Seasonality and future events

 		
 Diagonal scaling

 		
 Reprovisioning and legacy system usage tradeoffs

 		
 Statistics For Engineers

 		
 Normal distributions

 		
 Percentiles, histograms, averages, mean, medians

 		
 Software Deployment 101

 		
 Software deployment vs configuration management

 		
 Running services

 		
 inetd

 		
 Shared containers vs self-contained binaries

 		
 Package management

 		
 Configuration files

 		
 Source based / binary packages

 		
 Building packages

 		
 Packaging new tools

 		
 Software Deployment 201

 		
 Running services

 		
 daemontools

 		
 god

 		
 angel

 		
 runit

 		
 monit

 		
 supervisord

 		
 circus

 		
 Soft Skills 101

 		
 Communication basics

 		
 Communicating internally

 		
 Communicating externally

 		
 Communication Modes

 		
 Communicating via email

 		
 The dreaded meeting

 		
 Special cases for operations

 		
 Communicating planned and unplanned outages

 		
 Fielding customer complaints

 		
 Time Management

 		
 Project Management

 		
 Waterfall

 		
 Agile

 		
 The Tao of DevOps

 		
 What is DevOps

 		
 Why DevOps is important

 		
 What isn’t DevOps

 		
 The importance of Documentation

 		
 What to document

 		
 Documentation through Diagrams

 		
 Working with other teams

 		
 Soft Skills 201

 		
 Business Acumen in Operations

 		
 Understanding the role of operations

 		
 Maintaining Existing IT Infrastructures

 		
 Translating Customer Requirements

 		
 Protection of Information and Services

 		
 Advising within Current Limitations

 		
 Thinking broadly

 		
 Promoting Change

 		
 Building basic business skills

 		
 Budgeting and Financial Skills

 		
 The cost-benefit analysis

 		
 Navigating the capital expenditure process

 		
 Specific Examples

 		
 Selling system changes and new proposals

 		
 Negotiating budgetary constraints vs. need/want requirements

 		
 Evaluating a product offering

 		
 Labs exercises

 		
 Bare-Metal Provisioning 101

 		
 Install CentOS by hand

 		
 Install the same node using kickstart

 		
 Bare-Metal Provisioning 201

 		
 Setup a basic cobbler server

 		
 Build a profile

 		
 Kickstart a node

 		
 Change the profile, re-kickstart the node

 		
 Cloud Provisioning 101

 		
 Setup a free-tier account with AWS

 		
 Spawn a Linux node from the AWS Console

 		
 Cloud Provisioning 201

 		
 Spawn a Linux node using the AWS API

 		
 Attach an Elastic IP and EBS to it

 		
 Database 101

 		
 Install and start up MySQL

 		
 Create basic relational database / tables, using a variety of field types

 		
 Grant and revoke privileges

 		
 Install Riak

 		
 Database 201

 		
 Spawn up second VM/MySQL install

 		
 Set up Master->Slave replication

 		
 Deliberately break and then fix replication

 		
 Set up Master<->Master replication

 		
 Introduction to percona toolkit

 		
 Database 301

 		
 Galera cluster

 		
 Automation 101

 		
 Do you need it? How much and why?

 		
 Automation - Chef 201

 		
 Setup an Opscode account

 		
 Setup your workstation as a client to your Opscode account

 		
 Download the build-essential cookbook, and apply it to your workstation

 		
 Automation - Chef 301

 		
 Setup a chef-repo

 		
 Write your own cookbook

 		
 Automation - Chef 302

 		
 Setup your own Chef Server

 		
 Write your own resources/providers

 		
 Write sanity tests for your code

 		
 Automation - Puppet 201

 		
 Install Puppet

 		
 Install a Forge module using the module tool

 		
 Apply it to your local machine

 		
 Automation - Puppet 301

 		
 Install Puppet

 		
 Create your own module

 		
 Apply it to your local machine

 		
 Package Management 101

 		
 Setup a basic YUM or APT repository and put some packages in it

 		
 Setup a local mirror of CentOS (or what have you)

 		
 Setup a client to install from it

 		
 Package Management 201

 		
 Build a simple RPM or deb

 		
 FPM

 		
 Build automation fleets

 		
 koji

 		
 D

 		
 Version Control with Git 101

 		
 Open a GitHub account

 		
 Create a new repository called ‘scripts’

 		
 Place a useful shell script in it

 		
 Commit and push

 		
 Make a change, commit and push

 		
 Create a branch, make a change, commit, and push

 		
 Create a pull request and merge the branch into the master branch

 		
 DNS 101

 		
 Install Bind

 		
 Configure one zone

 		
 Show DNS resolution for an A and a CNAME record in the configured zone

 		
 HTTP 101

 		
 Install Apache

 		
 Configure a virtual host

 		
 Display a simple web page

 		
 Learning and the Community

 		
 Learning and strategies for improvement

 		
 Certification

 		
 Explicit vs Tacit knowledge

 		
 Types of learning

 		
 Learning strategies

 		
 Things to keep in mind as you learn how to be an engineer

 		
 General Tips for improvement

 		
 Golden rules for careers in ops

 		
 Other skills that can help you

 		
 Where to look for help in the community

 		
 Local user groups

 		
 Mailing lists and forums

 		
 IRC Channels

 		
 Membership organizations

 		
 Conferences and Events

 		
 Subreddits

 		
 Podcasts

 		
 RSS Feeds

 		
 ServerFault

 		
 Books (and concepts worth “Googling”)

 		
 University Programs that teach Operations

 		
 See also

 		
 Reading List

 		
 Contributions

 		
 How we’ll organize work

 		
 How to contribute

 		
 Rewards for contributions

 		
 Ops School Videos

 		
 How to write sections

 		
 Overwriting existing content

 		
 Credits

 		
 Conventions

 		
 Style Guide

 		
 Sample Network

 		
 Topography

 		
 Style Guide

 		
 Editing

 		
 Spacing

 		
 Showing Examples

 		
 Glossary

_images/graphviz-8e3cc5d773a803cb1ea29b0a24db7902234fea6d.png
load balancer x2

firewall x2

/

jumphost x2

app stack

L

mq

config mgmt

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/down-pressed.png

